定义:

1.不同元素组成

2.无序

3.集合中的元素必须是不可变类型

创建集合

s = {1,2,3,4,5,6,7,8}

1.定义可变集合

>>> set_test = set('hello')
>>> set_test
{'h', 'l', 'e', 'o'}

2.定义不可变集合

>>> set_test = set('hello')
>>> set_test
{'h', 'l', 'e', 'o'}  # 由此可见集合中的元素不可重复,都是不同的
>>> n_set_test = frozenset(set_test)
>>> n_set_test
frozenset({'h', 'l', 'e', 'o'})

集合运算

集合之间也可进行数学集合运算(例如:并集、交集等),可用相应的操作符或方法来实现。

子集

  子集,为某个集合中一部分的集合,故亦称部分集合。

  使用操作符 < 执行子集操作,同样地,也可使用方法 issubset() 完成。

>>> A = set('abcd')
>>> B = set('cdef')
>>> C = set("ab")
>>> C < A
True # C 是 A 的子集
>>> C < B
False
>>> C.issubset(A)
True

并集 

  一组集合的并集是这些集合的所有元素构成的集合,而不包含其他元素。

  使用操作符 | 执行并集操作,同样地,也可使用方法 union() 完成。

>>> A | B
{'c', 'b', 'f', 'd', 'e', 'a'}
>>> A.union(B)
{'c', 'b', 'f', 'd', 'e', 'a'}

交集

  两个集合 A 和 B 的交集是含有所有既属于 A 又属于 B 的元素,而没有其他元素的集合。

  使用 & 操作符执行交集操作,同样地,也可使用方法 intersection() 完成。

>>> A & B
{'c', 'd'}
>>> A.intersection(B)
{'c', 'd'}

差集

  A 与 B 的差集是所有属于 A 且不属于 B 的元素构成的集合

  使用操作符 - 执行差集操作,同样地,也可使用方法 difference() 完成。

>>> A - B
{'b', 'a'}
>>> A.difference(B)
{'b', 'a'}

对称差

  两个集合的对称差是只属于其中一个集合,而不属于另一个集合的元素组成的集合。

  使用 ^ 操作符执行差集操作,同样地,也可使用方法 symmetric_difference() 完成。

>>> A ^ B
{'b', 'f', 'e', 'a'}
>>> A.symmetric_difference(B)
{'b', 'f', 'e', 'a'}

  

集合方法

1.add 向集合中添加元素

>>> s = {1, 2, 3, 4, 5, 6}
>>> s.add("s")
>>> s
{1, 2, 3, 4, 5, 6, 's'}

2.clear 清空集合

>>> s = {1, 2, 3, 4, 5, 6}
>>> s.clear()
>>> s
set()

3.copy 返回集合的浅拷贝

>>> s = {1, 2, 3, 4, 5, 6}
>>> new_s = s.copy()
>>> new_s
{1, 2, 3, 4, 5, 6}

4.pop 删除并返回任意的集合元素(如果集合为空,会引发 KeyError)

>>> s = {1, 2, 3, 4, 5, 6}
>>> s.pop()  # pop删除时是无序的随机删除
1
>>> s
{2, 3, 4, 5, 6}

5.remove 删除集合中的一个元素(如果元素不存在,会引发 KeyError)

>>> s = {1, 2, 3, 4, 5, 6}
>>> s.remove(3)
>>> s
{1, 2, 4, 5, 6}

6.discard 删除集合中的一个元素(如果元素不存在,则不执行任何操作)

>>> s = {1, 2, 3, 4, 5, 6}
>>> s.discard("sb")
>>> s
{1, 2, 3, 4, 5, 6}

7.intersection 将两个集合的交集作为一个新集合返回

>>> s = {1, 2, 3, 4, 5, 6}
>>> s2 = {3, 4, 5, 6, 7, 8}
>>> s.intersection(s2)
{3, 4, 5, 6}
>>> s&s2  # 可以达到相同的效果
{3, 4, 5, 6}

8.union 将集合的并集作为一个新集合返回

>>> s = {1, 2, 3, 4, 5, 6}
>>> s2 = {3, 4, 5, 6, 7, 8}
>>> print(s.union(s2))
{1, 2, 3, 4, 5, 6, 7, 8}
>>> print(s|s2) # 用 | 可以达到相同效果
{1, 2, 3, 4, 5, 6, 7, 8}

9.difference 将两个或多个集合的差集作为一个新集合返回 

>>> s = {1, 2, 3, 4, 5, 6}
>>> s2 = {3, 4, 5, 6, 7, 8}
>>> print("差集:",s.difference(s2)) # 去除s和s2中相同元素,删除s2 保留s中剩余元素
差集: {1, 2}
>>> print("差集:",s2.difference(s))  # 去除s和s2中相同元素,删除s2 保留s2中剩余元素

差集: {8, 7}
>>> print("差集:",s - s2) # 符号 - 可以达到相同结果
差集: {1, 2}
>>> print("差集:",s2 - s) # 符号 - 可以达到相同结果
差集: {8, 7}

10. symmetric_difference 将两个集合的对称差作为一个新集合返回(两个集合合并删除相同部分,其余保留) 

>>> s = {1, 2, 3, 4, 5, 6}
>>> s2 = {3, 4, 5, 6, 7, 8}
>>> s.symmetric_difference(s2)
{1, 2, 7, 8}

11.update 用自己和另一个的并集来更新这个集合

>>> s = {'p', 'y'}
>>> s.update(['t', 'h', 'o', 'n']) # 添加多个元素
>>> s
{'p', 't', 'o', 'y', 'h', 'n'}
>>> s.update(['H', 'e'], {'l', 'l', 'o'}) # 添加列表和集合
>>> s
{'p', 'H', 't', 'l', 'o', 'y', 'e', 'h', 'n'}

12.intersection_update()  用自己和另一个的交集来更新这个集合

>>> s = {'a', 'b', 'c', 'd', 'q'}
>>> s2 = {'c', 'd', 'e', 'f'}
>>> s.intersection_update(s2) # 相当于s = s - s2
>>> s
{'c', 'd'}

13.isdisjoint()  如果两个集合有一个空交集,返回 True

>>> s = {1, 2}
>>> s1 = {3, 4}
>>> s2 = {2, 3}
>>> s.isdisjoint(s1)
True # s 和 s1 两个集合的交集为空返回 True
>>> s.isdisjoint(s2)
False # s 和 s2 两个集合的交集为 2 不是空 所有返回False

14.issubset() 如果另一个集合包含这个集合,返回 True

>>> s = {1, 2, 3}
>>> s1 = {1, 2, 3, 4}
>>> s2 = {2, 3}
>>> s.issubset(s1)
True # 因为 s1 集合 包含 s 集合
>>> s.issubset(s2)
False # s2 集合 不包含 s 集合

15.issuperset()  如果这个集合包含另一个集合,返回 True

>>> s = {1, 2, 3}
>>> s1 = {1, 2, 3, 4}
>>> s2 = {2, 3}
>>> s.issuperset(s1)
False # s 集合不包含 s1 集合
>>> s.issuperset(s2)
True # s 集合包含 s2 集合

16.difference_update() 从这个集合中删除另一个集合的所有元素

>>> s = {1, 2, 3}
>>> s1 = {1, 2, 3, 4}
>>> s2 = {2, 3}
>>> s.difference_update(s2)
>>> s
{1} # s2中的2,3 s集合中也有2,3 所以保留1
>>> s1.difference_update(s2)
>>> s1
{1, 4}

  

17.symmetric_difference_update() 用自己和另一个的对称差来更新这个集合

>>> s = {1, 2, 3}
>>> s1 = {1, 2, 3, 4}
>>> s2 = {2, 3}
>>> s1.symmetric_difference_update(s)
>>> s1
{4}
>>> s1.symmetric_difference_update(s2)
>>> s1
{2, 3, 4}
>>> s.symmetric_difference_update(s2)
>>> s
{1}

集合与内置函数

下述内置函数通常作用于集合,来执行不同的任务。

函数 描述
all() 如果集合中的所有元素都是 True(或者集合为空),则返回 True。
any() 如果集合中的所有元素都是 True,则返回 True;如果集合为空,则返回 False。
enumerate() 返回一个枚举对象,其中包含了集合中所有元素的索引和值(配对)。
len() 返回集合的长度(元素个数)
max() 返回集合中的最大项
min() 返回集合中的最小项
sorted() 从集合中的元素返回新的排序列表(不排序集合本身)
sum() 返回集合的所有元素之和

Python之集合详解的更多相关文章

  1. Python 字符串方法详解

    Python 字符串方法详解 本文最初发表于赖勇浩(恋花蝶)的博客(http://blog.csdn.net/lanphaday),如蒙转载,敬请保留全文完整,切勿去除本声明和作者信息.        ...

  2. Python中dict详解

    from:http://www.cnblogs.com/yangyongzhi/archive/2012/09/17/2688326.html Python中dict详解 python3.0以上,pr ...

  3. python之数据类型详解

    python之数据类型详解 二.列表list  (可以存储多个值)(列表内数字不需要加引号) sort s1=[','!'] # s1.sort() # print(s1) -->['!', ' ...

  4. (转)python collections模块详解

    python collections模块详解 原文:http://www.cnblogs.com/dahu-daqing/p/7040490.html 1.模块简介 collections包含了一些特 ...

  5. Python基础知识详解 从入门到精通(七)类与对象

    本篇主要是介绍python,内容可先看目录其他基础知识详解,欢迎查看本人的其他文章Python基础知识详解 从入门到精通(一)介绍Python基础知识详解 从入门到精通(二)基础Python基础知识详 ...

  6. Python推导式详解,带你写出比较精简酷炫的代码

    Python推导式详解,带你写出比较精简酷炫的代码 前言 1.推导式分类与用法 1.1 列表推导 1.2 集合推导 1.3 字典推导 1.4 元组推导?不存在的 2.推导式的性能 2.1 列表推导式与 ...

  7. python time模块详解

    python time模块详解 转自:http://blog.csdn.net/kiki113/article/details/4033017 python 的内嵌time模板翻译及说明  一.简介 ...

  8. Python开发技术详解(视频+源码+文档)

    Python, 是一种面向对象.直译式计算机程序设计语言.Python语法简捷而清晰,具有丰富和强大的类库.它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结 ...

  9. python/ORM操作详解

    一.python/ORM操作详解 ===================增==================== models.UserInfo.objects.create(title='alex ...

随机推荐

  1. 第1课 - 学习 Lua 的意义

    第1课 - 学习 Lua 的意义 1.Lua 简介 (1) 1993年.巴西 (2) 小巧精致的脚本语言,大小只有 200K (3) 用标准C语言写成,能够在所有的平台上编译运行 (4) 发明的目标是 ...

  2. firewalld 防火墙

    firewalld防火墙   firewalld简述 firewalld:防火墙,其实就是一个隔离工具:工作于主机或者网络的边缘对于进出本主机或者网络的报文根据事先定义好的网络规则做匹配检测,对于能够 ...

  3. Java 异常面试题(2020 最新版)

    Java异常架构与异常关键字 Java异常简介 Java异常是Java提供的一种识别及响应错误的一致性机制. Java异常机制可以使程序中异常处理代码和正常业务代码分离,保证程序代码更加优雅,并提高程 ...

  4. Unity 自己使用顶点描绘圆形UI图片

    2020-09-10 在游戏的UI中,圆形图片的需求是很高的,但是,在Unity中想要实现圆形UI,一般的做法是是使用圆形Mask(遮罩),但是使用Mask的缺点很明显,主要有三点: 1.比较麻烦,使 ...

  5. jwt攻击手段

    jwt 秘钥泄漏/敏感文件泄漏 在一些配置文件被我们可查的情况下,包括各种文件读取,源码泄漏,此时伪造身份就变得很容易了. 空加密算法 对于明文的加密算法通常为HS256,在jwt中分为三个部分,以点 ...

  6. Mall电商实战项目发布重大更新,全面支持SpringBoot 2.3.0

    1. 前言 前面近一个月去写自己的mybatis框架了,对mybatis源码分析止步不前,此文继续前面的文章.开始分析mybatis一,二级缓存的实现. 附上自己的项目github地址:https:/ ...

  7. 使用koa-log4管理nodeJs日志笔记

    前言 对于后端程序应用来说,日志是必不可少的,在nodeJs当中并没有自带的日志模块.最近正好使用koa框架来做后端服务,需要对日志进行分割处理,特记录下分享给大家. 一.后端代码目录结构 ├── b ...

  8. sping aop 源码分析(-)-- 代理对象的创建过程分析

    测试项目已上传到码云,可以下载:https://gitee.com/yangxioahui/aopdemo.git 具体如下: public interface Calc { Integer add( ...

  9. 测试人员的KPI考核制定

    1.工作内容和质量 1.需求熟悉程度 2.测试用例覆盖度 3.测试用例完成质量 4.有效BUG率 5.BUG描述质量 6.测试报告质量 7.按时完成测试工作 8.项目进度更新,项目BUG跟踪2.工作效 ...

  10. C++ 构造函数 隐式转换 深度探索,由‘类对象的赋值操作是否有可能调用到构造函数’该实验现象引发

    Test1 /** Ques: 类对象的赋值操作是否有可能调用到构造函数 ? **/ class mystring { char str[100]; public: mystring() //myst ...