请原谅没有一次写完,本文是自己学习过程中的记录,完善pandas的学习知识,对于现有网上资料的缺少和利用python进行数据分析这本书部分知识的过时,只好以记录的形势来写这篇文章.最如果后续工作定下来有时间一定完善pandas库的学习,请见谅!                     by LQJ 2015-10-25

前言:

首先推荐一个比较好的Python pandas DataFrame学习网址

网址: http://www.cnblogs.com/chaosimple/p/4153083.html

说明:
首先百度Python pandas DataFrame,下面列出DataFrame该数据结构的部分使用方法,并对其进行说明, DataFrame和Series作为padans两个主要的数据结构.
     如果你经常使用SQL数据库或者做过数据分析等相关工作,可以更快的上手python的pandas库,其pandas库的使用方法跟SQL语句的一些语法类似,只不过语言 变了而已.
正文:
import pandas as pd 引用pandas时使用pd名称就可
使用DataFrame查看数据(类似SQL中的select):
from pandas import DataFrame #从pandas库中引用DataFrame
df_obj = DataFrame() #创建DataFrame对象
df_obj.dtypes #查看各行的数据格式
df_obj.head() #查看前几行的数据,默认前5行
df_obj.tail() #查看后几行的数据,默认后5行
df_obj.index #查看索引
df_obj.columns #查看列名
df_obj.values #查看数据值
df_obj.describe #描述性统计
df_obj.T #转置
df_obj.sort(columns = ‘’)#按列名进行排序
df_obj.sort_index(by=[‘’,’’])#多列排序,使用时报该函数已过时,请用sort_values
df_obj.sort_values(by=['',''])同上
 
使用DataFrame选择数据(类似SQL中的LIMIT):
df_obj[‘客户名称’] #显示列名下的数据
df_obj[1:3] #获取1-3行的数据,该操作叫切片操作,获取行数据
df_obj.loc[:0,['用户号码','产品名称']] #获取选择区域内的数据,逗号前是行范围,逗号后是列范围,注loc通过标签选择数据,iloc通过位置选择数据
df_obj['套餐'].drop_duplicates() #剔除重复行数据
使用DataFrame重置数据:
df_obj.at[df_obj.index,'支局_维护线']='自有厅' #通过标签设置新的值,如果使用iat则是通过位置设置新的值
使用DataFrame筛选数据(类似SQL中的WHERE):
alist = ['023-18996609823']
df_obj['用户号码'].isin(alist) #将要过滤的数据放入字典中,使用isin对数据进行筛选,返回行索引以及每行筛选的结果,若匹配则返回ture
df_obj[df_obj['用户号码'].isin(alist)] #获取匹配结果为ture的行
使用DataFrame模糊筛选数据(类似SQL中的LIKE):
df_obj[df_obj['套餐'].str.contains(r'.*?语音CDMA.*')] #使用正则表达式进行模糊匹配,*匹配0或无限次,?匹配0或1次
使用DataFrame进行数据转换(后期补充说明)
df_obj['支局_维护线'] = df_obj['支局_维护线'].str.replace('巫溪分公司(.{2,})支局','\\1')#可以使用正则表达式
df_obj['支局_维护线'].drop_duplicates() #返回一个移除重复行的数据
可以设置take_last=ture 保留最后一个,或保留开始一个.补充说明:注意take_last=ture已过时,请使用keep='last'
使用pandas中读取文本数据:
read_csv('D:\LQJ.csv',sep=';',nrows=2) #首先输入csv文本地址,然后分割符选择等等
使用pandas聚合数据(类似SQL中的GROUP BY 或HAVING):
data_obj['用户标识'].groupby(data_obj['支局_维护线'])
data_obj.groupby('支局_维护线')['用户标识'] #上面的简单写法
adsl_obj.groupby('支局_维护线')['用户标识'].agg([('ADSL','count')])
#按支局进行汇总对用户标识进行计数,并将计数列的列名命名为ADSL
使用pandas合并数据集(类似SQL中的JOIN):
merge(mxj_obj2, mxj_obj1 ,on='用户标识',how='inner')# mxj_obj1和mxj_obj2将用户标识当成重叠列的键合并两个数据集,inner表示取两个数据集的交集.

python 数据处理学习pandas之DataFrame的更多相关文章

  1. Python 数据处理库 pandas 入门教程

    Python 数据处理库 pandas 入门教程2018/04/17 · 工具与框架 · Pandas, Python 原文出处: 强波的技术博客 pandas是一个Python语言的软件包,在我们使 ...

  2. Python 数据处理库pandas教程(最后附上pandas_datareader使用实例)

    0 简单介绍 pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库.本文是对它的一个入门教程. pandas提供了快速,灵活和富有 ...

  3. 程序员用于机器学习编程的Python 数据处理库 pandas 入门教程

    入门介绍 pandas适合于许多不同类型的数据,包括: · 具有异构类型列的表格数据,例如SQL表格或Excel数据 · 有序和无序(不一定是固定频率)时间序列数据. · 具有行列标签的任意矩阵数据( ...

  4. Python数据处理进阶——pandas

    对于python进行数据处理来说,pandas式一个不得不用的包,它比numpy很为强大.通过对<利用python进行数据分析>这本书中介绍pandas包的学习,再加以自己的理解,写下这篇 ...

  5. 程序员用于机器学习编程的Python 数据处理库 pandas 进阶教程

    数据访问 在入门教程中,我们已经使用过访问数据的方法.这里我们再集中看一下. 注:这里的数据访问方法既适用于Series,也适用于DataFrame. **基础方法:[]和. 这是两种最直观的方法,任 ...

  6. Python 数据处理库 pandas

    核心数据结构 pandas最核心的就是Series和DataFrame两个数据结构. 名称 维度 说明 Series 1维 带有标签的同构类型数组 DataFrame 2维 表格结构,带有标签,大小可 ...

  7. python数据处理工具 -- pandas(序列与数据框的构造)

    Pandas模块的核心操作对象就是对序列(Series)和数据框(Dataframe).序列可以理解为数据集中的一个字段,数据框是值包含至少两个字段(或序列) 的数据集. 构造序列 1.通过同质的列表 ...

  8. Python数据分析之pandas学习

    Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...

  9. python做数据分析pandas库介绍之DataFrame基本操作

    怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 这一部分主要学习pandas中基于前面两种数据结构的基本操作. 设有DataF ...

随机推荐

  1. 【Win10开发】Toast通知——前台激活

    上篇文章我们将了大体的Toast通知的模板及实例展示,那么,这篇文章就来讲讲Toast的前台激活. 首先是xaml界面,很简单,我们放一个Button和TextBlock,TextBlock用来显示T ...

  2. 爱上MVC~图表的使用Chart

    回到目录 图表在一个系统中是必须的,MVC架构把它当然是一个扩展集成了进来,通过简单的几句话就可以生成一个风格多样的图表,这给报表的开发带来了很大的方便,大叔的项目中也做了一个测试,把主要的代码贴出来 ...

  3. linux系统下make & make install

    make,make install都是典型的使用GNU的AUTOCONF和AUTOMAKE产生的程序的安装步骤. make是用来编译的,在命令行输入make命令之后,系统会在当前目录下搜索Makefi ...

  4. ffmpeg实现dxva2硬件加速

    这几天在做dxva2硬件加速,找不到什么资料,翻译了一下微软的两篇相关文档.这是第二篇,记录用ffmpeg实现dxva2. 第一篇翻译的Direct3D device manager,链接:http: ...

  5. 数据结构:顺序表(python版)

    顺序表python版的实现(部分功能未实现) #!/usr/bin/env python # -*- coding:utf-8 -*- class SeqList(object): def __ini ...

  6. spring入门(七)【springMVC返回json串】

    现在多数的应用为了提高交互性多使用异步刷新,即在不刷新整个页面的情况下,只刷新局部,局部刷新用得最多就是ajax,ajax和后台进行交互的数据格式使用的最多的是JSON,这里简单描述,在springm ...

  7. 软件公司为何要放弃MongoDB?

    本文转至:http://database.51cto.com/art/201503/469510_all.htm(只作转载, 不代表本站和博主同意文中观点或证实文中信息) Olery成立于2010年, ...

  8. java多线程-读写锁

    Java5 在 java.util.concurrent 包中已经包含了读写锁.尽管如此,我们还是应该了解其实现背后的原理. 读/写锁的 Java 实现(Read / Write Lock Java ...

  9. CSS Hack解决浏览器IE部分属性兼容性问题

    1.Css Hack 不同厂商的流览器或某浏览器的不同版本(如IE6-IE11,Firefox/Safari/Opera/Chrome等),对CSS的支持.解析不一样,导致在不同浏览器的环境中呈现出不 ...

  10. Three.js外部模型加载

    1.  首先我们要在官网: https://threejs.org/ 下载我们three.js压缩包,并将其中的build文件夹下的three.js通过script标签对的src属性导入到我们的页面中 ...