题面

JSOI2011 分特产

有 \(n\) 个不同的盒子和 \(m\) 种不同的球,第 \(i\) 种球有 \(a_i\) 个,用光所有球,求使每个盒子不空的方案数。

数据范围:\(1\le n,m,a_i\le 1000\)。


蒟蒻语

今天做了几道黑题,蒟蒻的做法非常蒟蒻,看上去很厉害其实很废,巨佬的做法是容斥,秒杀一切。

所以蒟蒻拿这道水题讲讲自己的做法。希望巨佬教蒟蒻容斥 \(\tt /kel\)。


蒟蒻解

看到盒子不能空,先二项式反演。

\(f(i)\) 表示 \(i\) 个盒子空,剩下非空的方案数;\(g(i)\) 表示 \(i\) 个盒子空,剩下随意。

\[g(i)=\sum_{x=i}^n {x\choose i}f(x)\Longleftrightarrow f(i)=\sum_{x=i}^n{x\choose i}(-1)^{x-i}g(x)
\]

然后考虑 \(g(i)\) 怎么求:因为 \(n-i\) 个可以空可以不空,所以可以构造生成函数:

\[\left(\prod_{j=1}^m(1+x_j+x_j^2+x_j^3+\cdots)\right)^{n-i}
\]

\(g(i)\) 就等于 \(\prod_{j=1}^mx_j^{a_j}\) 的项数。

所以可以每个 \(x_j\) 分开来考虑,用隔板法,得出:

\[g(i)={n\choose i}\prod_{j=1}^m{a_j+n-i-1\choose n-i-1}
\]

然后答案就是(当 \(x=n\) 时 \(n-x-1=-1\),所以结果为 \(0\),不需要枚举):

\[f(0)=\sum_{x=0}^{n-1}(-1)^{x}{n\choose x}\prod_{j=1}^m{a_j+n-x-1\choose n-x-1}
\]

代码

跟巨佬的代码是一样的,只不过推导过程不同。

#include <bits/stdc++.h>
using namespace std; //Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair(a,b)
#define x first
#define y second
#define be(a) a.begin()
#define en(a) a.end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f; //Data
const int N=1e3,T=N<<1;
const int mod=1e9+7;
int n,m,a[N],c[T+1][T+1];
int g(int x){
int res=c[n][x];
for(int i=0;i<m;i++)
res=(ll)res*c[a[i]+n-x-1][n-x-1]%mod;
return res;
} //Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n>>m;
for(int i=0;i<=T;i++){
c[i][0]=c[i][i]=1;
for(int j=1;j<=i-1;j++)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
}
for(int i=0;i<m;i++) cin>>a[i];
int ans=0;
for(int i=0;i<n;i++){
if(i&1) (ans+=mod-g(i))%=mod;
else (ans+=g(i))%=mod;
}
cout<<ans<<'\n';
return 0;
}

祝大家学习愉快!

题解-JSOI2011 分特产的更多相关文章

  1. 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥

    [BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...

  2. BZOJ 4710: [Jsoi2011]分特产 [容斥原理]

    4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...

  3. bzoj4710: [Jsoi2011]分特产 组合+容斥

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 289  Solved: 198[Submit][Status] ...

  4. bzoj4710 [Jsoi2011]分特产(容斥)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 814  Solved: 527[Submit][Status] ...

  5. 4710: [Jsoi2011]分特产

    4710: [Jsoi2011]分特产 链接 分析: 容斥原理+隔板法. 代码: #include<cstdio> #include<algorithm> #include&l ...

  6. 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 99  Solved: 65 Description JYY 带 ...

  7. [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 395  Solved: 262[Submit][Status] ...

  8. BZOJ 4710 [Jsoi2011]分特产 解题报告

    4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...

  9. ●BZOJ 4710 [Jsoi2011]分特产

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4710 题解: 容斥,组合先看看这个方案数的计算:把 M 个相同的东西分给 N 个人,每个人可 ...

随机推荐

  1. (3)ElasticSearch在linux环境中安装与配置head插件

    1.简介 ElasticSearch-Head跟Kibana一样也是一个针对ElasticSearch集群操作的API的可视化管理工具,它提供了集群管理.数据可视化.增删改查.查询语句等功能,最重要还 ...

  2. java中elasticsearch7.x关于nested类型的api使用,新增+更新

    0,定义esHighClient 1 @Configuration 2 public class RestClientConfig { 3 4 //类似:200.188.22.20:9300,200. ...

  3. MFC的消息响应机制说明

    MFC的快速理解: 1.MFC的设计者们在设计MFC时,有一个主要的方向就是尽可能使得MFC的代码要小,速度尽可能快.为了这个方向,工程师们使用了许多技巧,主要表现在宏的运用上,实 现MFC的消息映射 ...

  4. abp(net core)+easyui+efcore实现仓储管理系统——出库管理之六(五十五)

    abp(net core)+easyui+efcore实现仓储管理系统目录 abp(net core)+easyui+efcore实现仓储管理系统--ABP总体介绍(一) abp(net core)+ ...

  5. Docker学习—Swarm

    前言: 前一篇<Docker学习-Machine>中对Machine 进行了学习,本篇继续学习Swarm,那么Swarm是什么呢,有什么用呢?接下来一步步了解. 一.什么是Docker-S ...

  6. 掌握Python可以去哪些岗位?薪资如何?

    一.人工智能 Python作为人工智能的黄金语言,选择人工智能作为就业方向是理所当然的,就业前景也还不错.人工智能工程师的招聘起薪一般在20K-35K,如果是初级工程师,起薪一般12K. 二.大数据 ...

  7. python 工业日志模块 未来的python日志最佳实践

    目录 介绍 好的功能 安装方法 参数介绍 呆log 参数与 使用方法 版本说明 后期版本规划 todo 感谢 介绍 呆log:工业中,python日志模块,安装即用.理论上支持 python2, py ...

  8. Leetcode 周赛#200 题解

    1535 找出数组游戏的赢家 #模拟+优化 题目链接 题意 给你一个由 不同 整数组成的整数数组 arr 和一个整数 k(\(1\leq k\leq1e9\)) .每回合游戏都在数组的arr[0] 和 ...

  9. 迭代器原理gif

  10. Gin + 七牛云对象存储

    配置七牛云存储 创建存储空间 拿到密钥 安装七牛云对象存储SDK 推荐go.mod安装 // 将下面地址复制到go.mod,然后执行go mod download github.com/qiniu/a ...