D. Concatenated Multiples 解析(思維)
Codeforce 1029 D. Concatenated Multiples 解析(思維)
今天我們來看看CF1029D
題目連結
題目
給你一個序列\(a\)和一個數字\(k\),求有幾種indices pair可以讓兩個數字串接在一起之後可以被\(k\)整除。
前言
set,map這些東西的常數真的有夠高阿

想法
\(a_i\)和\(a_j\)串接起來是\(a_i\times 10^{digit(a_j)}+a_j\),我們固定一個\(a_i\)和\(digit(???)\),要看看哪些\(a_j\)符合長度是\(digit(???)\)和串接起來可被整除。
實作細節:我們可以先把相同長度的\(a_j\)放到一個\(vector\)裡,並且接著\(a_j\%=k\)。
如此一來決定了\(a_i\times 10^{digit(???)}\mod k\)是多少以後,只需要找到在同樣長度的\(a_j\)中,哪些剛好\(=(k-(a_i\times 10^{digit(???)}\mod k))\mod k\),而又因為我們已經把\(a_j\%=k\)過了,所以可以在\(sort\)過同樣長度的\(a_j\)後,直接\(upperbound-lowerbound\)找同樣值的元素有多少個。
還有,\(digit(a_j)\)的其中一種求法是\(digit(a_j)=1+log10(a_j)\)
其實我一開始是用\(map\)實作的,想法是固定\(a_j\)然後看看\(map\)裡又多少個\(a_i\times 10^{digit(???)}\)剛好可以符合要求,然後從前往後+從後往前各看一次。然而這題的\(k\le1e9\),因此\(map\)非常可能需要\(insert\)非常多空白元素,造成TLE,其中一部分造成TLE的原因是因為\(insert\)時要\(allocate\)新記憶體位置,這樣造成非常大的常數。
程式碼(正常作法):
const int _n=2e5+10;
int t,n,k,a[_n],dig[_n],ten[11];
VI d2a[_n];
ll ans;
main(void) {ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
cin>>n>>k;rep(i,0,n)cin>>a[i];ten[0]=1;rep(i,1,11)ten[i]=1ll*ten[i-1]*10%k;
rep(i,0,n)dig[i]=1+log10(a[i]),a[i]%=k,d2a[dig[i]].pb(a[i]);
rep(i,1,11)sort(all(d2a[i]));
rep(i,0,n)rep(j,1,11){
t=k-1ll*a[i]*ten[j]%k;if(t==k)t=0;
ans+=upper_bound(all(d2a[j]),t)-lower_bound(all(d2a[j]),t);
if(dig[i]==j and a[i]==t)ans--;
}cout<<ans<<'\n';
return 0;
}
標頭、模板請點Submission看
Submission
程式碼(改成unordered_map以後1800ms的AC):
const int _n=2e5+10;
int t,n,k,a[_n];
ll ans;
ll ten[11]={1,10,100,1000,10000,100000,1000000,10000000,100000000,1000000000,10000000000ll};
struct pair_hash
{
template <class T1, class T2>
std::size_t operator() (const std::pair<T1, T2> &pair) const
{
return std::hash<T1>()(pair.first) ^ std::hash<T2>()(pair.second);
}
};
unordered_map<PII,int,pair_hash> mp;
main(void) {ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
cin>>n>>k;rep(i,0,n)cin>>a[i];
rep(i,0,n){
ans+=mp[{(k-a[i]%k)%k,1+log10(a[i])}];
rep(j,1,11)mp[{(1ull*a[i]*ten[j])%(1ull*k),j}]++;
}mp.clear();
per(i,0,n){
ans+=mp[{(k-a[i]%k)%k,1+log10(a[i])}];
rep(j,1,11)mp[{(1ull*a[i]*ten[j])%(1ull*k),j}]++;
}cout<<ans<<'\n';
return 0;
}
標頭、模板請點Submission看
Submission
D. Concatenated Multiples 解析(思維)的更多相关文章
- A. Arena of Greed 解析(思維)
Codeforce 1425 A. Arena of Greed 解析(思維) 今天我們來看看CF1425A 題目連結 題目 略,請直接看原題. 前言 明明是難度1400的題目,但總感覺不是很好寫阿, ...
- E. Almost Regular Bracket Sequence 解析(思維)
Codeforce 1095 E. Almost Regular Bracket Sequence 解析(思維) 今天我們來看看CF1095E 題目連結 題目 給你一個括號序列,求有幾個字元改括號方向 ...
- C2. Power Transmission (Hard Edition) 解析(思維、幾何)
Codeforce 1163 C2. Power Transmission (Hard Edition) 解析(思維.幾何) 今天我們來看看CF1163C2 題目連結 題目 給一堆點,每兩個點會造成一 ...
- F. Moving Points 解析(思維、離散化、BIT、前綴和)
Codeforce 1311 F. Moving Points 解析(思維.離散化.BIT.前綴和) 今天我們來看看CF1311F 題目連結 題目 略,請直接看原題. 前言 最近寫1900的題目更容易 ...
- B. Two Arrays 解析(思維)
Codeforce 1417 B. Two Arrays 解析(思維) 今天我們來看看CF1417B 題目連結 題目 略,請直接看原題. 前言 a @copyright petjelinux 版權所有 ...
- C. k-Amazing Numbers 解析(思維)
Codeforce 1417 C. k-Amazing Numbers 解析(思維) 今天我們來看看CF1417C 題目連結 題目 略,請直接看原題. 前言 我實作好慢... @copyright p ...
- D. Road to Post Office 解析(思維)
Codeforce 702 D. Road to Post Office 解析(思維) 今天我們來看看CF702D 題目連結 題目 略,請直接看原題. 前言 原本想說會不會也是要列式子解或者二分搜,沒 ...
- C. Bank Hacking 解析(思維)
Codeforce 796 C. Bank Hacking 解析(思維) 今天我們來看看CF796C 題目連結 題目 略,請直接看原題. 前言 @copyright petjelinux 版權所有 觀 ...
- B. Kay and Snowflake 解析(思維、DFS、DP、重心)
Codeforce 685 B. Kay and Snowflake 解析(思維.DFS.DP.重心) 今天我們來看看CF685B 題目連結 題目 給你一棵樹,要求你求出每棵子樹的重心. 前言 完全不 ...
随机推荐
- 1.UiPath账密安全保存常见方法
今天在写流程的时候突然用到密码保存,看到同事不同项目中所用到的方法不同,就看了一下别的同学博客,总结的特别好,自己跟着实操了一遍,受益匪浅. RPA适合于登录不同的系统代替人工操作,而登录系统时难免要 ...
- 使用Azure Function玩转Serverless
Serverless&Azure Functions 通过无服务器计算,开发者无需管理基础结构,从而可以更快构建应用程序.通过无服务器应用程序,将由云服务提供商自动预配.缩放和管理运行代码所需 ...
- 关于Python中以字母r,或字母u 开头的字符串
(1)以r或R开头的Python中的字符串表示(非转义的)原始字符串 python里面的字符,如果开头处有个r,比如: (r'^time/plus/\d{1,2}/$', hours_ahead) ...
- 高效学习必备软件:OneNote+ Mindmaster
做笔记有两个关键点: 一是笔记内容详略得当.二是知识的框架清晰完整. 为什么这样说? 举个例子,如图是我的笔记界面,用的是免费的OneNote, OneNote是微软出的笔记软件, 非常好用,有着书写 ...
- Java知识系统回顾整理01基础04操作符01算术操作符
一.算数操作符类别 基本的有: + - * / % 自增 自减: ++ -- 二.基本算数操作符 + - * / 基本的加 减 乘 除 public class HelloWorld { public ...
- JavaFX ImageView
例子1:显示4个狗头.正常显示左上角.右下角的狗头:右上角的狗头旋转180°,并设置了透明度:左下角的狗头旋转90°,也设置了透明度. 1 import javafx.application.Appl ...
- 浅谈BSGS
用于求解形如\(a^x≡b\mod p\)的最小非负整数解\(x\). 由欧拉定理\(a^{\phi(p)}≡1\mod p\)可以知道,我们找的解如果有解则一定在\(\phi(p)\)范围内,而最大 ...
- 对于dijkstra最短路算法的复习
好久没有看图论了,就从最短路算法开始了. dijkstra算法的本质是贪心.只适用于不含负权的图中.因为出现负权的话,贪心会出错. 一般来说,我们用堆(优先队列)来优化,将它O(n2)的复杂度优化为O ...
- Java中类型判断的几种方式
1. 前言 在Java这种强类型语言中类型转换.类型判断是经常遇到的.今天就细数一下Java中类型判断的方法方式. 2. instanceof instanceof是Java的一个运算符,用来判断一个 ...
- 轻轻松松学CSS:Grid布局
网页布局总的来说经历了以下四个阶段: 1.古老的table表格布局,现在基本已被淘汰. 2.float浮动布局(或者position定位布局),借助float.position 等属性等进行布局,这种 ...