L1-3 阅览室(20 分)

天梯图书阅览室请你编写一个简单的图书借阅统计程序。当读者借书时,管理员输入书号并按下S键,程序开始计时;当读者还书时,管理员输入书号并按下E键,程序结束计时。书号为不超过1000的正整数。当管理员将0作为书号输入时,表示一天工作结束,你的程序应输出当天的读者借书次数和平均阅读时间。

注意:由于线路偶尔会有故障,可能出现不完整的纪录,即只有S没有E,或者只有E没有S的纪录,系统应能自动忽略这种无效纪录。另外,题目保证书号是书的唯一标识,同一本书在任何时间区间内只可能被一位读者借阅。

输入格式:

输入在第一行给出一个正整数N(≤10),随后给出N天的纪录。每天的纪录由若干次借阅操作组成,每次操作占一行,格式为:

书号([1, 1000]内的整数) 键值SE) 发生时间hh:mm,其中hh是[0,23]内的整数,mm是[0, 59]内整数)

每一天的纪录保证按时间递增的顺序给出。

输出格式:

对每天的纪录,在一行中输出当天的读者借书次数和平均阅读时间(以分钟为单位的精确到个位的整数时间)。

输入样例:

3
1 S 08:10
2 S 08:35
1 E 10:00
2 E 13:16
0 S 17:00
0 S 17:00
3 E 08:10
1 S 08:20
2 S 09:00
1 E 09:20
0 E 17:00

输出样例:

2 196
0 0
1 60


这一题我当时只得了12分,中了两个坑点T T.
一是我将标记书是否被借的数组初始化为0了。
二是我理解错题意,比如样例:
1 S 09:00
1 S 09:10
这个样例中有效的时间是第二个,我之前以为是第一个。

附代码:
 1 #include <cstdio>
2 #include <cstring>
3 #include <cmath>
4 #include <algorithm>
5 #include <cstdlib>
6 #include <string>
7 #include <iostream>
8 using namespace std;
9 const int M = 1111;
10 const int inf = -1;
11 int book[M];
12 char st[M];
13 int main(){
14 int n;
15 scanf("%d",&n);
16 for(int i=0;i<n;i++){
17
18 memset(book,inf,sizeof(book)); //不能初始化为0
19 int id;
20 int sum=0,cnt=0,h,m;
21
22 while(scanf("%d",&id)){
23
24 scanf("%s",st);
25 scanf("%d:%d",&h,&m);
26
27 if(id==0) {
28 printf("%d ",cnt);
29 if(cnt==0) printf("0");
30 else printf("%d\n",(int)(1.0*sum/cnt+0.5));
31 cnt=0;sum=0;
32 memset(book,inf,sizeof(book));
33 break;
34
35 }
36 int t=h*60+m;
37 if(st[0]=='S'){ //错误代码: if(st[0]=='S'&&book[id]==inf)
38 book[id]=t;
39 }
40 if(st[0]=='E'&&book[id]!=inf){
41 sum+=t-book[id];
42 book[id]=inf;
43 cnt++;
44 }
45 }
46 }
47 return 0;
48 }


2017CCCC决赛 L1-3. 阅览室的更多相关文章

  1. 2015年蓝桥杯B组C/C++决赛题解

    2015年第六届蓝桥杯B组C/C++决赛题解 点击查看2015年第六届蓝桥杯B组C/C++国赛题目(不含答案)     1.积分之迷 三重循环 枚举A,B,C的值,如果满足两个条件:3个A + 7个B ...

  2. SCNU 2015ACM新生赛决赛【F. Oyk闯机关】解题报告

            题目大意:一个$N$$\times$$N$的阵列,每个格子有$X_{ij}$个调和之音,若每次只能选择走右边或下边,从左上角出发走到右下角,问最多能收集到多少个调和之音?       ...

  3. paper 126:[转载] 机器学习中的范数规则化之(一)L0、L1与L2范数

    机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...

  4. 正则化方法:L1和L2 regularization、数据集扩增、dropout

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  5. 机器学习中的范数规则化之(一)L0、L1与L2范数

    L1正则会产生稀疏解,让很多无用的特征的系数变为0,只留下一些有用的特征 L2正则不让某些特征的系数变为0,即不产生稀疏解,只让他们接近于0.即L2正则倾向于让权重w变小.见第二篇的推导. 所以,样本 ...

  6. Proximal Gradient Descent for L1 Regularization

    [本文链接:http://www.cnblogs.com/breezedeus/p/3426757.html,转载请注明出处] 假设我们要求解以下的最小化问题:                     ...

  7. 一种利用 Cumulative Penalty 训练 L1 正则 Log-linear 模型的随机梯度下降法

    Log-Linear 模型(也叫做最大熵模型)是 NLP 领域中使用最为广泛的模型之一,其训练常采用最大似然准则,且为防止过拟合,往往在目标函数中加入(可以产生稀疏性的) L1 正则.但对于这种带 L ...

  8. 【CCCC天梯赛决赛】

    cccc的天梯赛决赛,水题一样的水,中档题以上的还是没做出来.补了一下题,觉得其实也不是很难,主要是练的少. L2-1:红色预警 并查集 我做的时候想不到并查集,想到了也不一定做的出来,都是其实不难. ...

  9. 浅谈压缩感知(三十):压缩感知重构算法之L1最小二乘

    主要内容: l1_ls的算法流程 l1_ls的MATLAB实现 一维信号的实验与结果 前言 前面所介绍的算法都是在匹配追踪算法MP基础上延伸的贪心算法,从本节开始,介绍基于凸优化的压缩感知重构算法. ...

随机推荐

  1. SAP里会话结束方法(杀死进程)

    在SAP的ERP里,有很多方法可以结束一个会话,然而在不同情况下,需要使用的方法也不同.下面从先后顺序来简单说明:1.SM04:最常用的方法,在SM04点击工具栏的会话->结束会话,来关闭一个会 ...

  2. LSM(Log Structured Merge Trees ) 笔记

    目录 一.大幅度制约存储介质吞吐量的原因 二.传统数据库的实现机制 三.LSM Tree的历史由来 四.提高写吞吐量的思路 4.1 一种方式是数据来后,直接顺序落盘 4.2 另一种方式,是保证落盘的数 ...

  3. Python-Flask搭建Web项目

    最近因项目需要,学习了用flask搭建web项目,以下是自己的使用感悟 Flask框架结构 static:存储一些静态资源 templates:存储对应的view app.py:涉及到页面的跳转,以及 ...

  4. ubuntu更新下载软件卡住0% [Connecting to archive.ubuntu.com (2001:67c:1360:8001::23)]

    一台ubuntu系统,查看硬件和配置环境的时候发现下载卡住了 根据提示就是有ipv6地址,系统也是配置了ipv6地址的.海外机器,而且可以ping通域名 最佳解决方案 我想出了如何让apt-get再次 ...

  5. 学习es6构造函数的第一天

    什么是面向对象 编程思维分为,面向过程和面向对象 面向过程就像一个人,一间屋子,一个床 一个人走进了屋子,上了床 二面向对象 人,屋子,床 可以是屋子里进了一个人,上了床 或者,屋子里的床上有一个人 ...

  6. ubuntu14.04 LEMP(linux+nginx+mysql+php5)构建环境

    Install LEMP (Linux, Nginx, MySQL and PHP) Stack on Ubuntu Linux 14.04 LTS by VIVEK GITE on DECEMBER ...

  7. 网络Devops探索与实践 流程管理分析师

    https://mp.weixin.qq.com/s/OKLiDi78uB8ZkPG2kUVxvA 网络Devops探索与实践 王镇 鹅厂网事 2020-09-23  9月16日举办的2020 ODC ...

  8. https://design-patterns.readthedocs.io/zh_CN/latest/index.html

    图说设计模式 - Graphic Design Patterns https://design-patterns.readthedocs.io/zh_CN/latest/index.html

  9. LOJ10097和平委员会

    POI 2001 根据宪法,Byteland民主共和国的公众和平委员会应该在国会中通过立法程序来创立. 不幸的是,由于某些党派代表之间的不和睦而使得这件事存在障碍. 此委员会必须满足下列条件: 每个党 ...

  10. JVM虚拟机Class类文件研究分析

    前言 为了研究Class文件,先编写一个最简单的代码: package com.courage; public class T0100_ByteCode01 { } 之所以说最简单,是因为这个类里面任 ...