题意:给你矩阵A,求S=A+A^1+A^2+...+A^n

sol:直接把每一项解出来显然是不行的,也没必要。

我们可以YY一个矩阵:

其中1表示单位矩阵

然后容易得到:

可以看出这个分块矩阵的左下角那块就可以得到要求的解S

我们取这一块,再减去一个单位矩阵1即可。

为了保持右下角一直是1,所以右上的位置必须是0,由于需要不断移位,所以1是必要的,A是必要的,所以第一列保证移位,

第二列保证保留1,因此我们能成功构造出....

这个题还可以根据等比矩阵的性质来进行求解...后面补(x

  1 #include <iostream>
2 #include <stdio.h>
3 #include <cstring>
4 using namespace std;
5
6 int n,k,mod;
7 typedef long long ll;
8 struct matrix{
9 int row,col,ele[32][32];
10 matrix(){};
11 matrix(int row,int col):row(row),col(col){
12 memset(ele,0,sizeof(ele));
13 }
14 void init(){
15 row=col=n;memset(ele,0,sizeof(ele));
16 for(int i=0;i<n;++i) ele[i][i]=1;
17 }
18 void clear(){
19 row=col=n;
20 memset(ele,0,sizeof(ele));
21 }
22 matrix operator *(const matrix& rhs){
23 if(col!=rhs.row) printf("Exception...\n");
24 matrix c=matrix(row,rhs.col);
25 for(int i=0;i<row;i++)
26 for(int k=0;k<col;++k)
27 for(int j=0;j<rhs.col;++j)
28 c.ele[i][j]=(c.ele[i][j]+ele[i][k]*rhs.ele[k][j])%mod;
29 return c;
30 }
31 matrix operator +(const matrix &rhs){
32 if(row!=rhs.row||col!=rhs.col) printf("+ Exception\n");
33 matrix c=matrix(row,col);
34 for(int i=0;i<row;++i)
35 for(int j=0;j<col;++j)
36 c.ele[i][j]=(c.ele[i][j]+ele[i][j]+rhs.ele[i][j])%mod;
37 return c;
38 }
39 void print(){
40 for(int i=0;i<row;++i){
41 for(int j=0;j<col;++j)
42 printf("%d ",ele[i][j]);
43 printf("\n");
44 }
45 }
46 };
47 struct bigMatrix{
48 int row,col;matrix ele[5][5];
49 bigMatrix(){};
50 bigMatrix(int row,int col):row(row),col(col){
51 for(int i=0;i<row;++i)
52 for(int j=0;j<col;++j) ele[i][j].clear();
53 }
54 void init(){
55 row=col=2;
56 for(int i=0;i<row;++i)
57 for(int j=0;j<col;++j) ele[i][j].clear();
58 for(int i=0;i<row;++i) ele[i][i].init();
59 }
60 bigMatrix operator *(const bigMatrix& rhs){
61 if(col!=rhs.row) printf("Exception...\n");
62 bigMatrix c=bigMatrix(row,rhs.col);
63 for(int i=0;i<row;i++)
64 for(int k=0;k<col;++k)
65 for(int j=0;j<rhs.col;++j)
66 c.ele[i][j]=(c.ele[i][j]+ele[i][k]*rhs.ele[k][j]);
67 return c;
68 }
69 };
70 bigMatrix fastpow(bigMatrix a,ll b){
71 bigMatrix ans;ans.init();
72 // printf("%d %d %d %d\n",a.row,a.col,ans.row,ans.col);
73 if(b==0) return ans;
74 while(b){
75 if(b&1) ans=ans*a;
76 a=a*a;
77 b>>=1;
78 }
79 return ans;
80 }
81 int main(){
82 while(~scanf("%d%d%d",&n,&k,&mod)){
83 matrix A=matrix(n,n);
84 for(int i=0;i<n;++i){
85 for(int j=0;j<n;++j){
86 scanf("%d",&A.ele[i][j]);
87 A.ele[i][j]%=mod;
88 }
89 }
90 bigMatrix mat=bigMatrix(2,2);
91 matrix t=matrix(n,n);t.init();
92 mat.ele[0][0]=A;mat.ele[0][1]=matrix(n,n);
93 mat.ele[1][0]=t;mat.ele[1][1]=t;
94 bigMatrix d=fastpow(mat,k+1);
95 matrix B=d.ele[1][0];
96 for(int i=0;i<n;++i) B.ele[i][i]=(B.ele[i][i]-1+mod)%mod;
97 for(int i=0;i<n;++i){
98 printf("%d",B.ele[i][0]);
99 for(int j=1;j<n;++j){
100 printf(" %d",B.ele[i][j]);
101 }
102 printf("\n");
103 }
104 }
105 return 0;
106 }

POJ3233 构造子矩阵+矩阵快速幂的更多相关文章

  1. 【构造共轭函数+矩阵快速幂】HDU 4565 So Easy! (2013 长沙赛区邀请赛)

    [解题思路] 给一张神图,推理写的灰常明白了,关键是构造共轭函数,这一点实在是要有数学知识的理论基础,推出了递推式,接下来就是矩阵的快速幂了. 神图: 给个大神的链接:构造类斐波那契数列的矩阵快速幂 ...

  2. poj3070 单位矩阵(转移矩阵构造)+矩阵快速幂

    太妙了..通过矩阵乘法来加速递推 #include<iostream> #include<cstring> #include<cstdio> using names ...

  3. hdu 2256 Problem of Precision 构造整数 + 矩阵快速幂

    http://acm.hdu.edu.cn/showproblem.php?pid=2256 题意:给定 n    求解   ? 思路: , 令  , 那么 , 得: 得转移矩阵: 但是上面求出来的并 ...

  4. hdu4686 Arc of Dream ——构造矩阵+快速幂

    link: http://acm.hdu.edu.cn/showproblem.php?pid=4686 构造出来的矩阵是这样的:根据题目的ai * bi = ……,可以发现 矩阵1 * 矩阵3 = ...

  5. poj3233 Matrix Power Series(矩阵快速幂)

    题目要求的是 A+A2+...+Ak,而不是单个矩阵的幂. 那么可以构造一个分块的辅助矩阵 S,其中 A 为原矩阵,E 为单位矩阵,O 为0矩阵    将 S 取幂,会发现一个特性: Sk +1右上角 ...

  6. poj3233(矩阵快速幂的和)

    题目链接:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K T ...

  7. HDU1757-A Simple Math Problem,矩阵快速幂,构造矩阵水过

    A Simple Math Problem 一个矩阵快速幂水题,关键在于如何构造矩阵.做过一些很裸的矩阵快速幂,比如斐波那契的变形,这个题就类似那种构造.比赛的时候手残把矩阵相乘的一个j写成了i,调试 ...

  8. BZOJ 3240 构造矩阵+矩阵快速幂

    思路: ax+b cx+d 构造矩阵+矩阵快速幂 (需要加各种特判,,,,我好像加少了- ) //By SiriusRen #include <cstdio> #include <c ...

  9. 2018 焦作网络赛 L Poor God Water ( AC自动机构造矩阵、BM求线性递推、手动构造矩阵、矩阵快速幂 )

    题目链接 题意 : 实际上可以转化一下题意 要求求出用三个不同元素的字符集例如 { 'A' .'B' .'C' } 构造出长度为 n 且不包含 AAA.BBB CCC.ACB BCA.CAC CBC ...

随机推荐

  1. 15V转5V转3.3V转3V芯片,DC-DC和LDO

    15V电压是属于一般电压,降压转成5V电压,3.3V电压和3V电压,适用于这个电压的DC-DC很多,LDO也是有可以选择的.LDO芯片如PW6206,PW8600等.DC-DC芯片如:PW2162,P ...

  2. 虚拟化kvm的搭建

            虚拟化, 是指通过虚拟化技术将一台计算机虚拟为多台逻辑计算机 ,在一台计算机上同时运行多个逻辑计算机,每台逻辑计算机可运行不同的操作系统,并且应用程序都可以在相互独立的空间内运行而互不 ...

  3. Bitter.Core系列十:Bitter ORM NETCORE ORM 全网最粗暴简单易用高性能的 NETCore 之 Log 日志

    Bitter 框架的 Log 全部采用 NLog 日志组件.Bitter.Core 的 执行语句的日志记录 Nlog 日志级别为:info.  如果想要查看Bitter.Core 的执行SQL,先要去 ...

  4. java面向对象(二)构造函数和构造代码块

    面向对象 类成员 1.成员变量 属性 数值类型的基本数据类型默认值是 0 成员变量在任何方法中都能访问,和声明先后没有关系 2.成员函数 方法 3.定义方式 class 类名{成员变量:成员函数} / ...

  5. 深度漫谈数据系统架构——Lambda architecture

    https://mp.weixin.qq.com/s/whmhm2yzug2WVdH3dTq8hg

  6. LOJ10067

    LOJ10067 构造完全图 给你一棵树 T,找出 T 能扩展出的边权和最小的完全图 G. 第一行 N 表示树 T 的点数: 保证输入数据构成一棵树. 输出仅一个数,表示最小的完全图 G 的边权和. ...

  7. k8s之集群管理

    导读 经过前面k8s系列的文章,这一系列已经基本完成,现在就用几篇文章说一下日常的集群维护. 目录 更新资源对象的Label Namespace:集群环境共享与隔离 部署集群监控 部署Web UI管理 ...

  8. Jsp数字格式化

    日期格式(2008年5月5日22点00分23秒) <fmt:formatDate value="<%=new Date() %>" pattern="y ...

  9. Vue技术点整理-Vuex

    什么是Vuex? 1,Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式.它采用集中式存储管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化 2,每一个 Vuex ...

  10. stop脚本

    PID=$(ps -ef | grep eladmin-system-2.0.jar | grep -v grep | awk '{ print $2 }')if [ -z "$PID&qu ...