bzoj4355 Play with sequence(吉司机线段树)题解
题意:
已知\(n\)个数字,进行以下操作:
- \(1.\)区间\([L,R]\) 赋值为\(x\)
- \(2.\)区间\([L,R]\) 赋值为\(max(a[i] + x, 0)\)
- \(3.\)区间\([L,R]\) 询问\(0\)个数
已知初始值\(\geq 0\),\(x\geq0\)。
思路:
吉司机线段树。
操作\(1\)可以直接打覆盖标记。
操作\(2\)可以分为两步:区间加\(x\),然后取区间\(max(a[i],0)\)。
操作\(3\)只要维护最小值的个数,因为不管怎么操作最后的值都\(\geq0\),然后查询的时候判最小值是不是\(0\)。
注意覆盖的时候,要把次小值初始化为\(INF\)。
代码:
#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
const int maxn = 5e5 + 5;
const int MAXM = 3e6;
const ll MOD = 998244353;
const ull seed = 131;
const ll INF = 1e16;
#define lson (rt << 1)
#define rson (rt << 1 | 1)
int a[maxn];
ll Min[maxn << 2], sMin[maxn << 2], add[maxn << 2], cov[maxn << 2];
int Minlen[maxn << 2];
inline void pushup(int rt){
if(Min[lson] > Min[rson]){
Min[rt] = Min[rson];
Minlen[rt] = Minlen[rson];
sMin[rt] = min(sMin[rson], Min[lson]);
}
if(Min[lson] < Min[rson]){
Min[rt] = Min[lson];
Minlen[rt] = Minlen[lson];
sMin[rt] = min(sMin[lson], Min[rson]);
}
if(Min[lson] == Min[rson]){
Min[rt] = Min[lson];
Minlen[rt] = Minlen[lson] + Minlen[rson];
sMin[rt] = min(sMin[lson], sMin[rson]);
}
}
inline void pushdown(int rt, int l, int r){
int m = (l + r) >> 1;
if(cov[rt] != -1){
Min[lson] = Min[rson] = cov[rt];
sMin[lson] = sMin[rson] = INF; //careful!!!!
cov[lson] = cov[rson] = cov[rt];
add[lson] = add[rson] = 0;
Minlen[lson] = m - l + 1;
Minlen[rson] = r - m;
cov[rt] = -1;
}
if(add[rt]){
Min[lson] += add[rt], sMin[lson] += add[rt];
Min[rson] += add[rt], sMin[rson] += add[rt];
add[lson] += add[rt], add[rson] += add[rt];
add[rt] = 0;
}
if(Min[lson] < Min[rt]){
if(sMin[lson] == Min[lson]) sMin[lson] = Min[rt];
Min[lson] = Min[rt];
}
if(Min[rson] < Min[rt]){
if(sMin[rson] == Min[rson]) sMin[rson] = Min[rt];
Min[rson] = Min[rt];
}
}
void build(int l, int r, int rt){
cov[rt] = -1, add[rt] = 0;
if(l == r){
Min[rt] = a[l];
sMin[rt] = INF;
Minlen[rt] = 1;
return;
}
int m = (l + r) >> 1;
build(l, m, lson);
build(m + 1, r, rson);
pushup(rt);
}
void cover(int L, int R, int l, int r, ll v, int rt){
if(L <= l && R >= r){
cov[rt] = v;
add[rt] = 0;
Min[rt] = v;
sMin[rt] = INF; //careful!!!!
Minlen[rt] = r - l + 1;
return;
}
pushdown(rt, l, r);
int m = (l + r) >> 1;
if(L <= m)
cover(L, R, l, m, v, lson);
if(R > m)
cover(L, R, m + 1, r, v, rson);
pushup(rt);
}
void update(int L, int R, int l, int r, ll v, int rt){
if(L <= l && R >= r){
Min[rt] += v;
sMin[rt] += v;
add[rt] += v;
return;
}
pushdown(rt, l, r);
int m = (l + r) >> 1;
if(L <= m)
update(L, R, l, m, v, lson);
if(R > m)
update(L, R, m + 1, r, v, rson);
pushup(rt);
}
void Less(int L, int R, int l, int r, ll v, int rt){
if(Min[rt] >= v) return;
if(L <= l && R >= r && sMin[rt] > v){ //>保证Minlen不变
Min[rt] = v;
return;
}
pushdown(rt, l, r);
int m = (l + r) >> 1;
if(L <= m)
Less(L, R, l, m, v, lson);
if(R > m)
Less(L, R, m + 1, r, v, rson);
pushup(rt);
}
int querySum(int L, int R, int l, int r, int rt){
if(L <= l && R >= r){
return Min[rt] == 0? Minlen[rt] : 0;
}
pushdown(rt, l, r);
int m = (l + r) >> 1;
int ret = 0;
if(L <= m)
ret += querySum(L, R, l, m, lson);
if(R > m)
ret += querySum(L, R, m + 1, r, rson);
return ret;
}
inline bool read(int &num){
char in;
bool IsN=false;
in = getchar();
if(in == EOF) return false;
while(in != '-' && (in < '0' || in > '9')) in = getchar();
if(in == '-'){ IsN = true; num = 0;}
else num = in - '0';
while(in = getchar(),in >= '0' && in <= '9'){
num *= 10, num += in-'0';
}
if(IsN) num = -num;
return true;
}
int main(){
int n, m;
read(n), read(m);
for(int i = 1; i <= n; i++) read(a[i]);
build(1, n, 1);
while(m--){
int l, r, x, op;
read(op), read(l), read(r);
if(op < 3) read(x);
if(op == 1) cover(l, r, 1, n, x, 1);
else if(op == 2) update(l, r, 1, n, x, 1), Less(l, r, 1, n, 0, 1);
else printf("%d\n", querySum(l, r, 1, n, 1));
}
return 0;
}
bzoj4355 Play with sequence(吉司机线段树)题解的更多相关文章
- BZOJ4355: Play with sequence(吉司机线段树)
题意 题目链接 Sol 传说中的吉司机线段树??感觉和BZOJ冒险那题差不多,就是强行剪枝... 这题最坑的地方在于对于操作1,$C >= 0$, 操作2中需要对0取max,$a[i] > ...
- HDU - 5306 Gorgeous Sequence (吉司机线段树)
题目链接 吉司机线段树裸题... #include<bits/stdc++.h> using namespace std; typedef long long ll; ,inf=0x3f3 ...
- UVALive - 4108 SKYLINE (吉司机线段树)
题目链接 题意:在一条直线上依次建造n座建筑物,每座建筑物建造完成后询问它在多长的部分是最高的. 比较好想的方法是用线段树分别维护每个区间的最小值mi和最大值mx,当建造一座高度为x的建筑物时,若mi ...
- bzoj5312 冒险(吉司机线段树)题解
题意: 已知\(n\)个数字,进行以下操作: \(1.\)区间\([L,R]\) 按位与\(x\) \(2.\)区间\([L,R]\) 按位或\(x\) \(3.\)区间\([L,R]\) 询问最大值 ...
- bzoj4695 最假女选手(势能线段树/吉司机线段树)题解
题意: 已知\(n\)个数字,进行以下操作: \(1.\)给一个区间\([L,R]\) 加上一个数\(x\) \(2.\)把一个区间\([L,R]\) 里小于\(x\) 的数变成\(x\) \(3.\ ...
- HDU - 6315 吉司机线段树
题意:给出a,b数组,区间上两种操作,给\(a[L,R]\)+1s,或者求\(\sum_{i=l}^{r}a_i/b_i\) 一看就知道是吉司机乱搞型线段树(低配版),暴力剪枝就好 维护区间a的最大值 ...
- HDU 5306 吉司机线段树
思路: 后面nlogn的部分是伪证... 大家可以构造数据证明是这是nlog^2n的啊~ 吉老司机翻车了 //By SiriusRen #include <cstdio> #include ...
- hdu6521 吉司机线段树
http://acm.hdu.edu.cn/showproblem.php?pid=6521 待填 代码 #include<bits/stdc++.h> #define ls o<& ...
- Petrozavodsk Winter-2018. AtCoder Contest. Problem I. ADD, DIV, MAX 吉司机线段树
题意:给你一个序列,需要支持以下操作:1:区间内的所有数加上某个值.2:区间内的所有数除以某个数(向下取整).3:询问某个区间内的最大值. 思路(从未见过的套路):维护区间最大值和区间最小值,执行2操 ...
随机推荐
- .NET 项目中的单元测试
.NET 项目中的单元测试 Intro "不会写单元测试的程序员不是合格的程序员,不写单元测试的程序员不是优秀的工程师." -- 一只想要成为一个优秀程序员的渣逼程序猿. 那么问题 ...
- Azure Terraform(六)Common Module
一,引言 之前我们在使用 Terraform 构筑一下 Azure 云资源的时候,直接将所以需要创建的资源全面写在 main.tf 这个文件中,这样写主要是为了演示使用,但是在实际的 Terrafor ...
- java进阶(33)--IO流
一.IO流概念:1.基本概念2.IO流分类3.java.io流的四大家族4.流的close和flush方法5.java.id下常用的16个流 二.FileInputStream字节输入流1.FileI ...
- TCP为什么要三次握手与四次分手?
TCP协议简介 TCP协议是五层协议中运输层的协议,下面依赖网络层.链路层.物理层,对于一个报文想发到另一台机器(假设是服务器)上对等层,每一个所依赖的层都会对报文进行包装,例如TCP协议就依赖网络层 ...
- Optimal asymmetric encryption padding 最优非对称加密填充(OAEP)
SubtleCrypto.decrypt() - Web APIs | MDN https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypt ...
- Java 字符串简介
从概念上讲,Java 字符串就是 Unicode 字符序列.Java 没有内置的字符串类型,而是在标准 Java 类库中提供了一个预定义类,很自然地叫做 String.每个用双引号括起来的字符串都是 ...
- loj10172
涂抹果酱 Tyvj 两周年庆典要到了,Sam 想为 Tyvj 做一个大蛋糕.蛋糕俯视图是一个 N×M 的矩形,它被划分成 N×M 个边长为 1×1 的小正方形区域(可以把蛋糕当成 NNN 行 MMM ...
- XCTF-你是谁
前期工作 查壳,无.运行 不知道有啥用,迷宫题? 逆向分析 文件结构 查看了一下主要逻辑在background中,因为MainActivity的setContentView是background.ba ...
- 不会开发的你也能管理好企业漏洞,开源免费工具:洞察(insight II)
前言 公司刚开始建设安全管理时,都是从一片混沌开始的,资源总是不够的,我们每个做安全的人员,又要会渗透,又要抓制度,还得管理各种漏洞.在管理楼栋是,我相信大家都遇到过以下几个问题: 漏洞提交太多,自己 ...
- Spark Dataset DataFrame 操作
Spark Dataset DataFrame 操作 相关博文参考 sparksql中dataframe的用法 一.Spark2 Dataset DataFrame空值null,NaN判断和处理 1. ...