Week 2 Quiz - Neural Network Basics(第二周测验 - 神经网络基础)

1. What does a neuron compute?(神经元节点计算什么?)

【 】 A neuron computes an activation function followed by a linear function (z = Wx + b)(神经 元节点先计算激活函数,再计算线性函数(z = Wx + b))

【 】 A neuron computes a linear function (z = Wx + b) followed by an activation function(神经 元节点先计算线性函数(z = Wx + b),再计算激活。)

【 】 A neuron computes a function g that scales the input x linearly (Wx + b)(神经元节点计算 函数 g,函数 g 计算(Wx + b))

【 】 A neuron computes the mean of all features before applying the output to an activation function(在 将输出应用于激活函数之前,神经元节点计算所有特征的平均值)

答案

【【★】 A neuron computes a linear function (z = Wx + b) followed by an activation function(神经 元节点先计算线性函数(z = Wx + b),再计算激活。)

Note: The output of a neuron is a = g(Wx + b) where g is the activation function (sigmoid, tanh, ReLU, …).(注:神经元的输出是 a = g(Wx + b),其中 g 是激活函数(sigmoid,tanh, ReLU,…))

 

\2. Which of these is the “Logistic Loss”?(下面哪一个是 Logistic 损失?)

【 】损失函数:\(L(\hat{y}^{(i)},y^{(i)})=-y^{(i)}log\hat{y}^{(i)}-(1-y^{(i)})log(1-\hat{y}^{(i)})\)

Note: We are using a cross-entropy loss function.(注:我们使用交叉熵损失函数。)

 

\3. Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?(假设 img 是一个(32,32,3) 数组,具有 3 个颜色通道:红色、绿色和蓝色的 32x32 像素的图像。 如何将其重新转换为 列向量?)

答案

x = img.reshape((32 * 32 * 3, 1))

 

\4. Consider the two following random arrays “a” and “b”:(看一下下面的这两个随机数组“a”和 “b”:)

a = np.random.randn(2, 3) # a.shape = (2, 3)
b = np.random.randn(2, 1) # b.shape = (2, 1)
c = a + b

What will be the shape of “c”?(请问数组 c 的维度是多少?)

答案

c.shape = (2, 3)

b (column vector) is copied 3 times so that it can be summed to each column of a.
Therefore, c.shape = (2, 3).( B(列向量)复制 3 次,以便它可以和 A 的每一列相加,所
以:c.shape = (2, 3))

 

\5. Consider the two following random arrays “a” and “b”:(看一下下面的这两个随机数组“a”和 “b”)

a = np.random.randn(4, 3) # a.shape = (4, 3)
b = np.random.randn(3, 2) # b.shape = (3, 2)
c = a * b

What will be the shape of “c”?(请问数组“c”的维度是多少?)

答案

The computation cannot happen because the sizes don’t match. It’s going to be “error”!
Note:“*” operator indicates element-wise multiplication. Element-wise multiplication requires same
dimension between two matrices. It’s going to be an error.(注:运算符 “*” 说明了按元素乘法来相
乘,但是元素乘法需要两个矩阵之间的维数相同,所以这将报错,无法计算。)

 

\6. Suppose you have

吴恩达《深度学习》-课后测验-第一门课 (Neural Networks and Deep Learning)-Week 2 - Neural Network Basics(第二周测验 - 神经网络基础)的更多相关文章

  1. 吴恩达深度学习课后习题第5课第1周第3小节: Jazz Improvisation with LSTM

    目录 Improvise a Jazz Solo with an LSTM Network Packages 1 - Problem Statement 1.1 - Dataset What are ...

  2. 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录

    吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...

  3. 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)

    我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...

  4. 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)

    学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...

  5. 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决

    问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...

  6. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...

  7. 吴恩达深度学习 反向传播(Back Propagation)公式推导技巧

    由于之前看的深度学习的知识都比较零散,补一下吴老师的课程希望能对这块有一个比较完整的认识.课程分为5个部分(粗体部分为已经看过的): 神经网络和深度学习 改善深层神经网络:超参数调试.正则化以及优化 ...

  8. 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响

    博主 撸的  该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...

  9. Coursera 吴恩达 深度学习 学习笔记

    神经网络和深度学习 Week 1-2 神经网络基础 Week 3 浅层神经网络 Week 4 深层神经网络 改善深层神经网络 Week 1 深度学习的实用层面 Week 2 优化算法 Week 3 超 ...

随机推荐

  1. TypeScript是什么,为什么要使用它?

    转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 原文出处:https://medium.com/swlh/what-is-typescript-bf333e ...

  2. Django context must be a dict ranther than Context

    1.1 错误描述 TypeError at /time/ context must be a dict rather than Context. Request Method: GET Request ...

  3. ThreadPoolExecutor参数以及源码介绍

    1.前言 在阿里巴巴的<Java 开发手册>中是这样规定线程池的: 线程池不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 的方式,这样的处理方式让写 ...

  4. R 安装包的方法

    install.packages(packageName) install.packages(path_to_file, repos = NULL, type="source") ...

  5. SparkStreaming-DStream(Discretized Stream)

    DStream(Discretized Stream)离散流 ◆ 和Spark基于RDD的概念很相似,Spark Streaming使用离散流 (discretized stream)作为抽象表示,叫 ...

  6. 要有一颗理财的心 - 读<富爸爸.穷爸爸>

    记得工作没多久后的一次加薪的例行谈话.部门经理和我说,不能靠工资过日子,要多想想怎么投资,我的主要财富就是靠投资赚来的.当时第一反应,老板,你不给我加薪找这借口也太牵强了吧.我的收入只有工资,我的工资 ...

  7. 谱聚类的python实现

    什么是谱聚类? 就是找到一个合适的切割点将图进行切割,核心思想就是: 使得切割的边的权重和最小,对于无向图而言就是切割的边数最少,如上所示.但是,切割的时候可能会存在局部最优,有以下两种方法: (1) ...

  8. Solon详解(六)- 定制业务级别的验证注解

    在业务的实现过程中,尤其是对外接口开发,我们需要对请求进行大量的验证并返回错误状态码和描述.lombok 框架有很多很赞的注解,但是人家是throw一个异常,这与有些需求不一定能匹配. 该文将基于So ...

  9. Word Count(C语言)

    1.项目地址 https://github.com/namoyuwen/word-count 2.项目相关要求 2.1 项目描述 Word Count    1. 实现一个简单而完整的软件工具(源程序 ...

  10. c++: internal compiler error: Killed (program cc1plus)

    转自https://blog.csdn.net/qq_27148893/article/details/88936044 这是在开发板上编译opencv的时候报了一个错,主要是在编译过程中,内存不够造 ...