Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 11496   Accepted: 2815

Description

Facer's pet cat just gave birth to a brood of little cats. Having considered the health of those lovely cats, Facer decides to make the cats to do some exercises. Facer has well designed a set of moves for his cats. He is now asking you to supervise the
cats to do his exercises. Facer's great exercise for cats contains three different moves:

g i : Let the ith cat take a peanut.

e i : Let the ith cat eat all peanuts it have.

s i j : Let the ith cat and jth cat exchange their peanuts.

All the cats perform a sequence of these moves and must repeat it m times! Poor cats! Only Facer can come up with such embarrassing idea. 

You have to determine the final number of peanuts each cat have, and directly give them the exact quantity in order to save them.

Input

The input file consists of multiple test cases, ending with three zeroes "0 0 0". For each test case, three integers nm and k are given firstly, where n is the number of cats and k is the length of the move
sequence. The following klines describe the sequence.

(m≤1,000,000,000, n≤100, k≤100)

Output

For each test case, output n numbers in a single line, representing the numbers of peanuts the cats have.

Sample Input

3 1 6
g 1
g 2
g 2
s 1 2
g 3
e 2
0 0 0

Sample Output

2 0 1

题意:

有n只猫咪,开始时每只猫有花生0颗,现有m组重复操作,每组由下面三个中的k个操作组成:
               1. g i 给i只猫咪一颗花生米
               2. e i 让第i只猫咪吃掉它拥有的所有花生米
               3. s i j 将猫咪i与猫咪j的拥有的花生米交换

m次后,每只猫咪有多少颗花生?

可以构建一个1*(n+1)大小的辅助矩阵,即1 0 0 0,然后根据操作构造转置矩阵。

转置矩阵的构造:

转置矩阵一开始初始化为(n+1)*(n+1)大小的单位矩阵,然后每一次操作都要变化。

1.g i 第0行第i列的元素加1

2.e i 第i列的元素都变为0

3.s i j 第i列和第j列的元素都换一下

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0) struct matrix{
ll n,m,i;
ll data[105][105];
void init_danwei(){
for(i=0;i<n;i++){
data[i][i]=1;
}
}
}; matrix multi(matrix &a,matrix &b){
ll i,j,k;
matrix temp;
temp.n=a.n;
temp.m=b.m;
for(i=0;i<temp.n;i++){
for(j=0;j<temp.m;j++){
temp.data[i][j]=0;
}
}
for(i=0;i<a.n;i++){
for(k=0;k<a.m;k++){
if(a.data[i][k]>0){
for(j=0;j<b.m;j++){
temp.data[i][j]=temp.data[i][j]+a.data[i][k]*b.data[k][j];
}
}
}
}
return temp;
} matrix fast_mod(matrix &a,ll n){
matrix ans;
ans.n=a.n;
ans.m=a.m;
memset(ans.data,0,sizeof(ans.data));
ans.init_danwei();
while(n>0){
if(n&1)ans=multi(ans,a);
a=multi(a,a);
n>>=1;
}
return ans;
} int main()
{
ll n,k,m,i,j,e,c,d,h;
while(scanf("%lld%lld%lld",&n,&m,&k)!=EOF)
{
if(n==0 && m==0 && k==0)break;
matrix a;
a.n=a.m=n+1;
memset(a.data,0,sizeof(a.data));
a.init_danwei(); char s[10];
ll temp;
for(i=1;i<=k;i++){
scanf("%s",s);
if(s[0]=='g'){
scanf("%lld",&c);
a.data[0][c]++;
}
else if(s[0]=='s'){
scanf("%lld%lld",&c,&d);
for(j=0;j<n+1;j++){
temp=a.data[j][c];
a.data[j][c]=a.data[j][d];
a.data[j][d]=temp;
}
}
else if(s[0]=='e'){
scanf("%lld",&c);
for(j=0;j<n+1;j++){
a.data[j][c]=0;
} }
} matrix cnt;
cnt=fast_mod(a,m);
matrix ant;
ant.n=1;
ant.m=n+1;
memset(ant.data,0,sizeof(ant.data));
ant.data[0][0]=1; matrix juzhen;
juzhen=multi(ant,cnt); for(i=1;i<=n;i++){
if(i==n)printf("%lld\n",juzhen.data[0][n]);
else printf("%lld ",juzhen.data[0][i]);
} }
return 0;
}

poj3757 Training little cats的更多相关文章

  1. 矩阵快速幂 POJ 3735 Training little cats

    题目传送门 /* 题意:k次操作,g:i猫+1, e:i猫eat,s:swap 矩阵快速幂:写个转置矩阵,将k次操作写在第0行,定义A = {1,0, 0, 0...}除了第一个外其他是猫的初始值 自 ...

  2. [POJ 3735] Training little cats (结构矩阵、矩阵高速功率)

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9613   Accepted: 2 ...

  3. Training little cats poj3735

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9299   Accepted: 2 ...

  4. Training little cats(poj3735,矩阵快速幂)

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10737   Accepted:  ...

  5. POJ 3735 Training little cats<矩阵快速幂/稀疏矩阵的优化>

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13488   Accepted:  ...

  6. POJ 3735 Training little cats(矩阵快速幂)

    Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11787 Accepted: 2892 ...

  7. [POJ3735]Training little cats

    题目:Training little cats 链接:http://poj.org/problem?id=3735 分析: 1)将操作用矩阵表示出来,然后快速幂优化. 2)初始矩阵:$ \left[ ...

  8. POJ 3735:Training little cats 联想到矩阵相乘

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11208   Accepted:  ...

  9. POJ 3735 Training little cats

    题意 维护一个向量, 有三种操作 将第\(i\)个数加1 将第\(i\)个数置0 交换第\(i\)个数和第\(j\)个数 Solution 矩阵乘法/快速幂 Implementation 我们将向量写 ...

随机推荐

  1. LeetCode374 猜数字大小

    我们正在玩一个猜数字游戏. 游戏规则如下:我从 1 到 n 选择一个数字. 你需要猜我选择了哪个数字.每次你猜错了,我会告诉你这个数字是大了还是小了.你调用一个预先定义好的接口 guess(int n ...

  2. drop table 命令不回收以前的相关访问权限

    drop table 命令不回收以前的相关访问权限,也就是说假如我现在把表删除了,然后再创建一个同名的表时,会自动赋予权限的.

  3. 软碟通制作win10镜像,无法打开install.wim的问题

    打开软碟通,单击左上角"文件"→"打开",选择.iso文件的存放目录,再选择.iso映像文件打开,即可看到映像文件全部加载到UltraISO了,如下图.   将 ...

  4. 【Oracle】静默安装oracle 11.2.0.4 超详细

    安装oracle 1.执行脚本完成初始化oracle环境 2.解压缩oracle的压缩包,单实例1个,rac是2两个压缩包 3.修改response下的db_install.rsp 修改内容如下: - ...

  5. python协程爬取某网站的老赖数据

    import re import json import aiohttp import asyncio import time import pymysql from asyncio.locks im ...

  6. 查看Java的汇编指令

    在IDEA配置VM options,打印汇编指令 -XX:+UnlockDiagnosticVMOptions -XX:+PrintAssembly windows系统 下载插件 hsdis-amd6 ...

  7. NodeJS连接MongoDB数据库

    NodeJS连接MongoDB数据库 连接数据库的js文件[我将其命名为(connect.js)] // 引入mongoose第三方模块 const mongoose = require('mongo ...

  8. jQuery 点击当前展开其他隐藏

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <meta name ...

  9. JAVAV EMAIL

    package a; import java.util.Date;import java.util.Properties;import javax.mail.Authenticator;import ...

  10. Git提交代码规范 而且规范的Git提交历史,还可以直接生成项目发版的CHANGELOG(semantic-release)

    Git提交代码规范 - 木之子梦之蝶 - 博客园 https://www.cnblogs.com/liumengdie/p/7885210.html Commit message 的格式 Git 每次 ...