Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 11496   Accepted: 2815

Description

Facer's pet cat just gave birth to a brood of little cats. Having considered the health of those lovely cats, Facer decides to make the cats to do some exercises. Facer has well designed a set of moves for his cats. He is now asking you to supervise the
cats to do his exercises. Facer's great exercise for cats contains three different moves:

g i : Let the ith cat take a peanut.

e i : Let the ith cat eat all peanuts it have.

s i j : Let the ith cat and jth cat exchange their peanuts.

All the cats perform a sequence of these moves and must repeat it m times! Poor cats! Only Facer can come up with such embarrassing idea. 

You have to determine the final number of peanuts each cat have, and directly give them the exact quantity in order to save them.

Input

The input file consists of multiple test cases, ending with three zeroes "0 0 0". For each test case, three integers nm and k are given firstly, where n is the number of cats and k is the length of the move
sequence. The following klines describe the sequence.

(m≤1,000,000,000, n≤100, k≤100)

Output

For each test case, output n numbers in a single line, representing the numbers of peanuts the cats have.

Sample Input

3 1 6
g 1
g 2
g 2
s 1 2
g 3
e 2
0 0 0

Sample Output

2 0 1

题意:

有n只猫咪,开始时每只猫有花生0颗,现有m组重复操作,每组由下面三个中的k个操作组成:
               1. g i 给i只猫咪一颗花生米
               2. e i 让第i只猫咪吃掉它拥有的所有花生米
               3. s i j 将猫咪i与猫咪j的拥有的花生米交换

m次后,每只猫咪有多少颗花生?

可以构建一个1*(n+1)大小的辅助矩阵,即1 0 0 0,然后根据操作构造转置矩阵。

转置矩阵的构造:

转置矩阵一开始初始化为(n+1)*(n+1)大小的单位矩阵,然后每一次操作都要变化。

1.g i 第0行第i列的元素加1

2.e i 第i列的元素都变为0

3.s i j 第i列和第j列的元素都换一下

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0) struct matrix{
ll n,m,i;
ll data[105][105];
void init_danwei(){
for(i=0;i<n;i++){
data[i][i]=1;
}
}
}; matrix multi(matrix &a,matrix &b){
ll i,j,k;
matrix temp;
temp.n=a.n;
temp.m=b.m;
for(i=0;i<temp.n;i++){
for(j=0;j<temp.m;j++){
temp.data[i][j]=0;
}
}
for(i=0;i<a.n;i++){
for(k=0;k<a.m;k++){
if(a.data[i][k]>0){
for(j=0;j<b.m;j++){
temp.data[i][j]=temp.data[i][j]+a.data[i][k]*b.data[k][j];
}
}
}
}
return temp;
} matrix fast_mod(matrix &a,ll n){
matrix ans;
ans.n=a.n;
ans.m=a.m;
memset(ans.data,0,sizeof(ans.data));
ans.init_danwei();
while(n>0){
if(n&1)ans=multi(ans,a);
a=multi(a,a);
n>>=1;
}
return ans;
} int main()
{
ll n,k,m,i,j,e,c,d,h;
while(scanf("%lld%lld%lld",&n,&m,&k)!=EOF)
{
if(n==0 && m==0 && k==0)break;
matrix a;
a.n=a.m=n+1;
memset(a.data,0,sizeof(a.data));
a.init_danwei(); char s[10];
ll temp;
for(i=1;i<=k;i++){
scanf("%s",s);
if(s[0]=='g'){
scanf("%lld",&c);
a.data[0][c]++;
}
else if(s[0]=='s'){
scanf("%lld%lld",&c,&d);
for(j=0;j<n+1;j++){
temp=a.data[j][c];
a.data[j][c]=a.data[j][d];
a.data[j][d]=temp;
}
}
else if(s[0]=='e'){
scanf("%lld",&c);
for(j=0;j<n+1;j++){
a.data[j][c]=0;
} }
} matrix cnt;
cnt=fast_mod(a,m);
matrix ant;
ant.n=1;
ant.m=n+1;
memset(ant.data,0,sizeof(ant.data));
ant.data[0][0]=1; matrix juzhen;
juzhen=multi(ant,cnt); for(i=1;i<=n;i++){
if(i==n)printf("%lld\n",juzhen.data[0][n]);
else printf("%lld ",juzhen.data[0][i]);
} }
return 0;
}

poj3757 Training little cats的更多相关文章

  1. 矩阵快速幂 POJ 3735 Training little cats

    题目传送门 /* 题意:k次操作,g:i猫+1, e:i猫eat,s:swap 矩阵快速幂:写个转置矩阵,将k次操作写在第0行,定义A = {1,0, 0, 0...}除了第一个外其他是猫的初始值 自 ...

  2. [POJ 3735] Training little cats (结构矩阵、矩阵高速功率)

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9613   Accepted: 2 ...

  3. Training little cats poj3735

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9299   Accepted: 2 ...

  4. Training little cats(poj3735,矩阵快速幂)

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10737   Accepted:  ...

  5. POJ 3735 Training little cats<矩阵快速幂/稀疏矩阵的优化>

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13488   Accepted:  ...

  6. POJ 3735 Training little cats(矩阵快速幂)

    Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11787 Accepted: 2892 ...

  7. [POJ3735]Training little cats

    题目:Training little cats 链接:http://poj.org/problem?id=3735 分析: 1)将操作用矩阵表示出来,然后快速幂优化. 2)初始矩阵:$ \left[ ...

  8. POJ 3735:Training little cats 联想到矩阵相乘

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11208   Accepted:  ...

  9. POJ 3735 Training little cats

    题意 维护一个向量, 有三种操作 将第\(i\)个数加1 将第\(i\)个数置0 交换第\(i\)个数和第\(j\)个数 Solution 矩阵乘法/快速幂 Implementation 我们将向量写 ...

随机推荐

  1. Selenium WebDriver 8大定位方式

    Selenium WebDriver 8大定位方式: driver.find_element_by_id() driver.find_element_by_name() driver.find_ele ...

  2. Docker 介绍和安装(一)

    # 下载阿里云的 Centos7 的docker.repo # step 1: 安装必要的一些系统工具 sudo yum install -y yum-utils device-mapper-pers ...

  3. 使用 gRPC-UI 调试.NET 5的gPRC服务

    在上一篇文章中,我介绍了gRPCurl一个命令行工具,该工具可用于测试gRPC服务的端点,在本文中,我将向您介绍 gRPC-ui, 它可以作为Web工具使用,有点像Postman,但用于gRPC AP ...

  4. 导出exe的经验

    安装pyinstaller 首先要找到scripts的绝对路径(主要是找到scripts就行了 先是安装C:\Users\96290\AppData\Local\Programs\Python\Pyt ...

  5. Android事件分发机制四:学了事件分发有什么用?

    " 学了事件分发,影响我CV大法吗?" " 影响我陪女朋友的时间" " ..... " 前言 Android事件分发机制已经来到第四篇了,在 ...

  6. 基于Abp React前端的项目建立与运行——React框架分析

    基于Abp React前端的项目建立与运行 目录 基于Abp React前端的项目建立与运行 1 Abp项目配置 2 运行WebApi后端项目 2.1 创建C3D数据库,并且将数据库对应链接字符串替换 ...

  7. 【Android初级】如何动态添加菜单项(附源码+避坑)

    我们平时在开发过程中,为了灵活多变,除了使用静态的菜单,还有动态添加菜单的需求.今天要分享的功能如下: 在界面的右上角有个更多选项,点开后,有两个子菜单:关于和退出 点击"关于", ...

  8. vue.esm.js?efeb:628 [Vue warn]: Invalid prop: type check failed for prop "defaultActive". Expected String with value "0", got Number with value 0.

    vue.esm.js?efeb:628 [Vue warn]: Invalid prop: type check failed for prop "defaultActive". ...

  9. Error Code: 2006 - MySQL 5.7 server has gone away

    使用 Navicat 执行 sql 脚本失败 出现 Error Code: 2006 - MySQL server has gone away 原因 当MySQL客户端或mysqld服务器收到大于ma ...

  10. 唯一ID生成算法剖析

    https://mp.weixin.qq.com/s/E3PGP6FDBFUcghYfpe6vsg 唯一ID生成算法剖析 原创 cloudoxou 腾讯技术工程 2019-10-08