树状数组 && 板子
本文树状数组讲解转载于:https://www.cnblogs.com/xenny/p/9739600.html
本文新加内容为模板代码部分
1.什么是树状数组?
顾名思义,就是用数组来模拟树形结构呗。那么衍生出一个问题,为什么不直接建树?答案是没必要,因为树状数组能处理的问题就没必要建树。和Trie树的构造方式有类似之处。
2.树状数组可以解决什么问题
可以解决大部分基于区间上的更新以及求和问题。
3.树状数组和线段树的区别在哪里
树状数组可以解决的问题都可以用线段树解决,这两者的区别在哪里呢?树状数组的系数要少很多,就比如字符串模拟大数可以解决大数问题,也可以解决1+1的问题,但没人会在1+1的问题上用大数模拟。
4.树状数组的优点和缺点
修改和查询的复杂度都是O(logN),而且相比线段树系数要少很多,比传统数组要快,而且容易写。
缺点是遇到复杂的区间问题还是不能解决,功能还是有限。
5.树状数组的时间复杂度
树状数组建树时间复杂度为O(N)
树状数组查询和修改时间复杂度为O(logN)
一、树状数组介绍
二叉树大家一定都知道,如下图
如果每个父亲都存的是两个儿子的值,是不是就可以解决这类区间问题了呢。是的没错,但是这样的树形结构,叫做线段树。
那真的的树形结构是怎样的,和上图类似,但省去了一些节点,以达到用数组建树。
黑色数组代表原来的数组(下面用A[i]代替),红色结构代表我们的树状数组(下面用C[i]代替),发现没有,每个位置只有一个方框,令每个位置存的就是子节点的值的和,则有
- C[1] = A[1];
- C[2] = A[1] + A[2];
- C[3] = A[3];
- C[4] = A[1] + A[2] + A[3] + A[4];
- C[5] = A[5];
- C[6] = A[5] + A[6];
- C[7] = A[7];
- C[8] = A[1] + A[2] + A[3] + A[4] + A[5] + A[6] + A[7] + A[8];
可以发现,这颗树是有规律的
C[i] = A[i - 2k+1] + A[i - 2k+2] + ... + A[i]; //k为i的二进制中从最低位到高位连续零的长度,get_sum函数原理就是这个
例如i = 8(1000)时候,k = 3,可自行验证。
这个怎么实现求和呢,比如我们要找前7项和,那么应该是SUM = C[7] + C[6] + C[4];
而根据上面的式子,容易的出SUMi = C[i] + C[i-2k1] + C[(i - 2k1) - 2k2] + .....;(SUMi表示区间[1,i]内所有数之和)
这里的k1为i的“二进制中从最低位到高位连续零”,k2为(i-2k1)的“二进制中从最低位到高位连续零”,之后的也是这样
其实树状数组就是一个二进制上面的应用。
现在新的问题来了2^k(单独对一个i求2^k)该怎么求呢,不难得出2^k = i&(i^(i-1));但这个还是不好求出呀,前辈的智慧就出来了,2^k = i&(-i);
为什么呢?
这里利用的负数的存储特性,负数是以补码存储的,对于整数运算 x&(-x)有
● 当x为0时,即 0 & 0,结果为0;
●当x为奇数时,最后一个比特位为1,取反加1没有进位,故x和-x除最后一位外前面的位正好相反,按位与结果为0。结果为1。
●当x为偶数,且为2的m次方时,x的二进制表示中只有一位是1(从右往左的第m+1位),其右边有m位0,故x取反加1后,从右到左第有m个0,第m+1位及其左边全是1。这样,x& (-x) 得到的就是x。
●当x为偶数,却不为2的m次方的形式时,可以写作x= y * (2^k)。其中,y的最低位为1。实际上就是把x用一个奇数左移k位来表示。这时,x的二进制表示最右边有k个0,从右往左第k+1位为1。当对x取反时,最右边的k位0变成1,第k+1位变为0;再加1,最右边的k位就又变成了0,第k+1位因为进位的关系变成了1。左边的位因为没有进位,正好和x原来对应的位上的值相反。二者按位与,得到:第k+1位上为1,左边右边都为0。结果为2^k。
总结一下:x&(-x),当x为0时结果为0;x为奇数时,结果为1;x为偶数时,结果为x中2的最大次方的因子。
而且这个有一个专门的称呼,叫做lowbit,即取2^k。
二、模板代码
1、建立树状数组、修改某位置点的大小、询问区间内所有数之和
上面已经解释了如何用树状数组求区间和,那么如果我们要更新某一个点的值呢,还是一样的,上面说了C[i] = A[i - 2k+1] + A[i - 2k+2] + ... + A[i],那么如果我们更新某个A[i]的值,则会影响到所有包含有A[i]位置。如果求A[i]包含哪些位置里呢,同理有
A[i] 包含于 C[i + 2k]、C[(i + 2k) + 2k]...; //update函数的原理就是这个
模板例题:hdu 1166
代码:
1 #include<stdio.h>
2 #include<iostream>
3 #include<algorithm>
4 #include<string.h>
5 using namespace std;
6 const int maxn=5e5+10;
7 int v,tree[maxn];
8 int n;
9 int lowbit(int x)
10 {
11 return x&(-x);
12 }
13 void update(int i,int x)
14 {
15 while(i<=n)
16 {
17 tree[i]+=x;
18 i+=lowbit(i);
19 }
20 }
21 int get_sum(int i) //获取区间[1,i]所有数之和
22 {
23 int ans=0;
24 while(i>0)
25 {
26 ans+=tree[i];
27 i-=lowbit(i);
28 }
29 return ans;
30 }
31 int main()
32 {
33 int t,p=0;
34 scanf("%d",&t);
35 while(t--)
36 {
37 memset(tree,0,sizeof(tree));
38 scanf("%d",&n);
39 for(int i=1;i<=n;++i)
40 {
41 scanf("%d",&v);
42 update(i,v);
43 }
44 char s[20];
45 int x,y;
46 printf("Case %d:\n",++p);
47 while(~scanf("%s",s))
48 {
49 if(s[0]=='E') break;
50 else if(s[0]=='Q')
51 {
52 scanf("%d%d",&x,&y);
53 printf("%d\n",get_sum(y)-get_sum(x-1));
54 }
55 else if(s[0]=='A')
56 {
57 scanf("%d%d",&x,&y);
58 update(x,y);
59 }
60 else if(s[0]=='S')
61 {
62 scanf("%d%d",&x,&y);
63 update(x,-y);
64 }
65 }
66 }
67 return 0;
68 }
2、建立树状数组、区间更新、单点查询:
如果题目是让你把x-y区间内的所有值全部加上k或者减去k,然后查询操作是问某个点的值,这种时候该怎么做呢。如果是像上面的树状数组来说,就必须把x-y区间内每个值都更新,这样的复杂度肯定是不行的,这个时候,就不能再用数据的值建树了,这里我们引入差分,利用差分建树。
假设我们规定A[0] = 0;
则有 A[i] = Σij = 1D[j];(D[j] = A[j] - A[j-1]),即前面i项的差值和,这个有什么用呢?例如对于下面这个数组
- A[] = 1 2 3 5 6 9
- D[] = 1 1 1 2 1 3
如果我们把[2,5]区间内值加上2,则变成了
- A[] = 1 4 5 7 8 9
- D[] = 1 3 1 2 1 1
发现了没有,当某个区间[x,y]值改变了,区间内的差值是不变的,只有D[x]和D[y+1]的值发生改变,至于为什么我想我就不用解释了吧。
所以我们就可以利用这个性质对D[]数组建立树状数组。
代码:
1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 using namespace std;
6 const int maxn=5e5+10;
7 int n,m,tree[maxn];
8 int lowbit(int x)
9 {
10 return x&(-x);
11 }
12 void update(int x,int y)
13 {
14 while(x<=n)
15 {
16 tree[x]+=y;
17 x+=lowbit(x);
18 }
19 }
20 int get_sum(int x)
21 {
22 int ans=0;
23 while(x>0)
24 {
25 ans+=tree[x];
26 x-=lowbit(x);
27 }
28 return ans;
29 }
30 int main()
31 {
32 while(~scanf("%d%d",&n,&m))
33 {
34 memset(tree,0,sizeof(tree));
35 int start,now;
36 scanf("%d",&start);
37 update(1,start);
38 for(int i=2; i<=n; ++i)
39 {
40 scanf("%d",&now);
41 update(i,now-start);
42 start=now;
43 }
44 while(m--)
45 {
46 int x,y,z;
47 scanf("%d",&x);
48 if(x==1)
49 {
50 scanf("%d%d%d",&x,&y,&z);
51 update(x,z);
52 update(y+1,-z);
53 }
54 else
55 {
56 scanf("%d",&x);
57 printf("%d\n",get_sum(x));
58 }
59 }
60
61 }
62 return 0;
63 }
3、建立树状数组、区间修改、区间查询
上面我们说的差值建树状数组,得到的是某个点的值,那如果我既要区间更新,又要区间查询怎么办。这里我们还是利用差分,由上面可知
∑ni = 1A[i] = ∑ni = 1 ∑ij = 1D[j];
则A[1]+A[2]+...+A[n]
= (D[1]) + (D[1]+D[2]) + ... + (D[1]+D[2]+...+D[n])
= n*D[1] + (n-1)*D[2] +... +D[n]
= n * (D[1]+D[2]+...+D[n]) - (0*D[1]+1*D[2]+...+(n-1)*D[n])
所以上式可以变为∑ni = 1A[i] = n*∑ni = 1D[i] - ∑ni = 1( D[i]*(i-1) );
如果你理解前面的都比较轻松的话,这里也就知道要干嘛了,维护两个数状数组,sum1[i] = D[i],sum2[i] = D[i]*(i-1);
例题:A Simple Problem with Integers
代码:
1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 using namespace std;
6 const int maxn=1e5+10;
7 typedef long long ll;
8 ll n,m,tree[maxn],tree2[maxn];
9 ll lowbit(ll x)
10 {
11 return x&(-x);
12 }
13 void update(ll x,ll y)
14 {
15 ll i=x-1;
16 while(x<=n)
17 {
18 tree[x]+=y;
19 tree2[x]+=i*y;
20 x+=lowbit(x);
21 }
22 }
23 ll get_sum(ll x)
24 {
25 ll ans=0;
26 ll i=x;
27 while(x>0)
28 {
29 ans=ans+i*tree[x]-tree2[x];
30 x-=lowbit(x);
31 }
32 return ans;
33 }
34 int main()
35 {
36 while(~scanf("%lld%lld",&n,&m))
37 {
38 memset(tree,0,sizeof(tree));
39 memset(tree2,0,sizeof(tree2));
40 ll start,now;
41 scanf("%lld",&start);
42 update(1,start);
43 for(ll i=2; i<=n; ++i)
44 {
45 scanf("%lld",&now);
46 update(i,now-start);
47 start=now;
48 }
49 while(m--)
50 {
51 char s[5];
52 ll x,y,z;
53 scanf("%s",s);
54 if(s[0]=='C')
55 {
56 scanf("%lld%lld%lld",&x,&y,&z);
57 update(x,z);
58 update(y+1,-z);
59 }
60 else
61 {
62 scanf("%lld%lld",&x,&y);
63 printf("%lld\n",get_sum(y)-get_sum(x-1));
64 }
65 }
66 }
67 return 0;
68 }
树状数组 && 板子的更多相关文章
- 树状数组板子 x
树状数组! 参考 http://www.cnblogs.com/zzyh/p/6992148.html 洛谷 P3374 [模板]树状数组 1 题目描述 如题,已知一个数列,你需要进行下面两种操作: ...
- BZOJ3289[JZYZOJP2018]: Mato的文件管理 莫队+树状数组+离散化
描述 Description Mato同学从各路神犇以各种方式(你们懂的)收集了许多资料,这些资料一共有n份,每份有一个大小和一个编号.为了防止他人偷拷,这些资料都是加密过的, ...
- LOJ #6270. 数据结构板子题 (离线+树状数组)
题意 有 \(n\) 个区间,第 \(i\) 个区间是 \([l_i,r_i]\) ,它的长度是 \(r_i-l_i\) . 有 \(q\) 个询问,每个询问给定 \(L,R,K\) ,询问被 \([ ...
- hdu1556 树状数组区间更新单点查询板子
就是裸的区间更新: 相对于直观的线段树的区间更新,树状数组的区间更新原理不太相同:由于数组中的一个结点控制的是一块区间,当遇到更新[l,r]时,先将所有能控制到 l 的结点给更新了,这样一来就是一下子 ...
- UESTC 1584 Washi与Sonochi的约定【树状数组裸题+排序】
题目链接:UESTC 1584 Washi与Sonochi的约定 题意:在二维平面上,某个点的ranked被定义为x坐标不大于其x坐标,且y坐标不大于其y坐标的怪物的数量.(不含其自身),要求输出n行 ...
- Libre OJ 130、131、132 (树状数组 单点修改、区间查询 -> 区间修改,单点查询 -> 区间修改,区间查询)
这三题均可以用树状数组.分块或线段树来做 #130. 树状数组 1 :单点修改,区间查询 题目链接:https://loj.ac/problem/130 题目描述 这是一道模板题. 给定数列 a[1] ...
- Luogu3527 POI2011 Meteors 整体二分、树状数组、差分
传送门 比较板子的整体二分题目,时限有点紧注意常数 整体二分的过程中将时间在\([l,mid]\)之间的流星使用树状数组+差分进行维护,然后对所有国家查看一遍并分好类,递归下去,记得消除答案在\([m ...
- 树状数组训练题2:SuperBrother打鼹鼠(vijos1512)
先给题目链接:打鼹鼠 这道题怎么写? 很明显是树状数组. 而且,很明显是二维树状数组. 如果你没学过二维的树状数组,那么戳开这里:二维树状数组 看完以后,你就会知道怎么做了. 没有什么好解释的,几乎就 ...
- BZOJ1935: [Shoi2007]Tree 园丁的烦恼(树状数组 二维数点)
题意 题目链接 Sol 二维数点板子题 首先把询问拆成四个矩形 然后离散化+树状数组统计就可以了 // luogu-judger-enable-o2 #include<bits/stdc++.h ...
随机推荐
- Linux学习笔记 | 配置Samba
Samba是在Linux和UNIX系统上实现SMB协议的一个免费软件,由服务器及客户端程序构成.SMB(Server Messages Block,信息服务块)是一种在局域网上共享文件和打印机的一种通 ...
- mysql的导入
方法1 load data [local] infile 'filename' into table tablename[option] ields terminated by 'string'(字段 ...
- ctfhub技能树—web前置技能—http协议—302跳转
开启靶机 打开环境,查看显示 点击Give me Flag后发生跳转 根据题目提示为HTTP临时重定向 简单记录一下HTTP临时重定向是什么 HTTP重定向:服务器无法处理浏览器发送过来的请求(req ...
- 用其他主机docker login登录Harbor仓库报错
做微服务的时候,我准备把编译好的jar包,部署到我的Harbor仓库上,却登录不上去,出现以下报错: [root@k8s-master ~]# docker login 192.168.30.24Us ...
- SAP GUI用颜色区分不同的系统
对于经常打开多个窗口的SAP用户,有时候可能同时登录了生产机.测试机和开发机,为了避免误操作,比如在测试要执行的操作,结果在生产机做了,结果可想而知. 虽然可以通过右下角查看再去判断,但是总是没有通过 ...
- ORB-SLAM2-tracking线程
tracking线程 Tracking线程的主要工作是从图像中提取ORB特征,根据上一帧进行姿态估计或者进行通过全局重定位初始化位姿,然后跟踪已经重建的局部地图,优化位姿,再根据一些规则确定新的关键帧 ...
- Scrapy——將數據保存到MySQL數據庫
Scrapy--將數據保存到MySQL數據庫 1. 在MySQL中創建數據庫表job_inf: 1 Create table job_inf( 2 id int(11) not null auto_i ...
- jQuery 留言表单验证
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- Java并发组件三之Semaphore
使用场景:常用于使用有限的资源,限制线程并发的最大数量.默认情况下,信号量是非公平性的(先等待先执行为公平.类似于买东西的时候大家排队付款,先来的先付款是公平的.但是这时候有人插队,那就是非公平的)设 ...
- JVM虚拟机垃圾回收(GC)算法及优缺点
一.什么是GC GC是jvm的垃圾回收,垃圾回收的规律和原则为: 次数上频繁收集新生区(Young) 次数上较少收集养老区(Old) 基本上不动永久区(Perm) 二.GC算法(分代收 ...