7.9 NOI模拟赛 C.走路 背包 dp 特异性
(啊啊啊 什么考试的时候突然降智这题目硬生生没想出来。
容易发现是先走到某个地方 然后再走回来的 然后在倒着走的路径上选择一些点使得最后的得到的最多。
设\(f_{i,j}\)表示到达i这个点选择的价值为j的最大获得的值 这显然是一个01背包。
然后不断更新答案即可。可以直接从前往后坐。复杂度\(n\cdot m\)
code
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 10000000000000010ll
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-8
#define sq sqrt
#define S second
#define F first
#define mod 998244353
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=((ll)x*10+ch-'0')%mod;ch=getc();}
return x*f;
}
const int MAXN=1000010,maxn=100010;
int n,m,ans;
int f[MAXN];
int a[MAXN];
int main()
{
freopen("w.in","r",stdin);
freopen("w.out","w",stdout);
get(n);get(m);
rep(1,n,i)get(a[i]);
rep(1,n,i)
{
fep(m-2*i,(ll)i*a[i],j)f[j]=max(f[j],f[j-i*a[i]]+a[i]);
ans=max(ans,f[m-2*i]);
}
put(ans);
return 0;
}
这样只有30分 发现这是一个标准的01背包 而众所周知 01背包的复杂度的下界就是$n\cdot m$所以是优化不了的。
上午我也止步于此 不断的挣扎却毫无思路。
其实主要是观察到 获得的值域是m的 这一点是和原本普通的01背包是有所不同的 这点特异性还是很容易发现的吧?
所以可以想到把状态翻转 \(f_i\)表示得到i所花费的最小代价。
考虑正着做不太爽 和上面复杂度一样 倒着做 就可以发现了 对于每个i 状态数量为\(\frac{m}{i}\)
所以就可以过了。我真的是太弱了。
code
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-8
#define sq sqrt
#define S second
#define F first
#define mod 998244353
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=((ll)x*10+ch-'0')%mod;ch=getc();}
return x*f;
}
const int MAXN=1000010,maxn=100010;
int n,m,ans;
ll f[MAXN];//f[i]表示拿了i的最小代价.
ll a[MAXN];
int main()
{
freopen("w.in","r",stdin);
freopen("w.out","w",stdout);
gt(n);gt(m);
rep(1,n,i)gt(a[i]);
memset(f,0x3f,sizeof(f));f[0]=0;
fep(n,1,i)
{
if(!a[i])continue;
fep(m/i,a[i]+1,j)f[j]=min(f[j],f[j-a[i]]+a[i]*i);
f[a[i]]=min(f[a[i]],a[i]*i+2*i);
}
fep(m,0,j)if(f[j]<=m){put(j);return 0;}
}
注意开long long.
7.9 NOI模拟赛 C.走路 背包 dp 特异性的更多相关文章
- 7.12 NOI模拟赛 生成树 装压dp vector装压
LINK:生成树 这场比赛我打的真失败 T3是比较容易的 却一直刚 那道"数论" 10分其实搜一下全排列. 30分容易想到对边进行装压dp. 不过存在一些细节 可以对于一个连通块的 ...
- 7.12 NOI模拟赛 探险队 期望 博弈 dp 最坏情况下最优策略 可并堆
LINK:探险队 非常难的题目 考试的时候爆零了 完全没有想到到到底怎么做 (当时去刚一道数论题了. 首先考虑清楚一件事情 就是当前是知道整张地图的样子 但是不清楚到底哪条边断了. 所以我们要做的其实 ...
- NOI模拟赛 Day1
[考完试不想说话系列] 他们都会做呢QAQ 我毛线也不会呢QAQ 悲伤ING 考试问题: 1.感觉不是很清醒,有点困╯﹏╰ 2.为啥总不按照计划来!!! 3.脑洞在哪里 4.把模拟赛当作真正的比赛,紧 ...
- 6.28 NOI模拟赛 好题 状压dp 随机化
算是一道比较新颖的题目 尽管好像是两年前的省选模拟赛题目.. 对于20%的分数 可以进行爆搜,对于另外20%的数据 因为k很小所以考虑上状压dp. 观察最后答案是一个连通块 从而可以发现这个连通块必然 ...
- [CSP-S模拟测试]:Market(背包DP)
题目描述 在比特镇一共有$n$家商店,编号依次为$1$到$n$.每家商店只会卖一种物品,其中第$i$家商店的物品单价为$c_i$,价值为$v_i$,且该商店开张的时间为$t_i$. $Byteasar ...
- 【2018.12.10】NOI模拟赛3
题目 WZJ题解 大概就是全场就我写不过 $FFT$ 系列吧……自闭 T1 奶一口,下次再写不出这种 $NTT$ 裸题题目我就艹了自己 -_-||| 而且这跟我口胡的自创模拟题 $set1$ 的 $T ...
- NOI 模拟赛 #2
得分非常惨惨,半个小时写的纯暴力 70 分竟然拿了 rank 1... 如果 OYJason 和 wxjor 在可能会被爆踩吧 嘤 T1 欧拉子图 给一个无向图,如果一个边集的导出子图是一个欧拉回路, ...
- NOI模拟赛Day5
T1 有and,xor,or三种操作,每个人手中一个数,求和左边进行某一种运算的最大值,当t==2时,还需要求最大值的个数. test1 20% n<=1000 O(n^2)暴力 test2 2 ...
- NOI模拟赛Day4
看到成绩的时候我的内心** woc第一题写错了呵呵呵呵呵呵呵呵 人不能太浪,会遭报应的** ------------------------------------------------------ ...
随机推荐
- UVA1464 Traffic Real Time Query System
传送门:https://www.luogu.com.cn/problem/UVA1464 看到这道题,求必经的点数,还是无向图.那么妥妥的圆方树.圆方树上的任意两圆点间的路径必定是圆点方点相交错的,对 ...
- OutOfMemory相关问题(内存溢出异常OOM)
OutOfMemory(内存溢出异常OOM) java.lang.OutOfMemoryError :Thrown when the Java Virtual Machine cannot alloc ...
- day82 序列化器-Serializer
目录 一.序列化器的基本功能 二.定义序列化器 三.创建Serializers对象 四.序列化器的使用 1 序列化 2 反序列化 2.1 数据验证(类比forms组件) 2.2 数据保存 一.序列化器 ...
- 006.Nginx访问控制
一 Nginx连接限制 1.1 HTTP协议的连接与请求 HTTP是建立在TCP, 一次HTTP请求需要先建立TCP三次握手(称为TCP连接),在连接的基础上再进行HTTP请求. HTTP请求建立在一 ...
- Java 添加条码、二维码到Word文档
本文介绍如何在Word文档中添加条码.二维码.可在文档正文段落中添加,也可在页眉页脚中添加.下面将通过Java代码示例介绍如何实现. 使用工具:Free Spire.Office for Java(免 ...
- MISC学习记录 (一)
A记录 题目 他在看什么视频,好像很好看,不知道是什么网站的. 还好我截取了他的数据包,找呀找. key就是网站名称.格式ctf{key} tip:A记录的第一条. 解题链接 过程 下载解题链接中的文 ...
- 数据可视化之 图表篇(五) PowerBI图表不够炫酷?来看看这个
现在这个大数据时代,每时每刻.各行各业都在产生多种多样的海量数据,如何简单高效的来理解.挖掘这些数据,发现背后的见解就非常重要. 本文介绍这个图表就可以帮你快速发现海量数据背后的见解,微软研究院打造的 ...
- Java并发编程实践
最近阅读了<Java并发编程实践>这本书,总结了一下几个相关的知识点. 线程安全 当多个线程访问某个类时,不管运行时环境采用何种调度方式或者这些线程将如何交替执行,并且在主调代码中不需要任 ...
- vscode切换虚拟环境报错无法加载文件 E:\Python_project\shop_env\Scripts\Activate.ps1,因为在此系统上禁止运行 脚本。
在使用vscode切换python的虚拟环境时报错 解决方法如下: Windows+x打开面板,选择以管理员身份运行PowerShell,输入: set-executionpolicy remotes ...
- row_number() over()排序功能说明
1.row_number() over()排序功能: (1) row_number() over()分组排序功能: 在使用 row_number() over()函数时候,over()里头的分组以及排 ...