Docker(二十)-Docker容器CPU、memory资源限制
背景
在使用 docker 运行容器时,默认的情况下,docker没有对容器进行硬件资源的限制,当一台主机上运行几百个容器,这些容器虽然互相隔离,但是底层却使用着相同的 CPU、内存和磁盘资源。如果不对容器使用的资源进行限制,那么容器之间会互相影响,小的来说会导致容器资源使用不公平;大的来说,可能会导致主机和集群资源耗尽,服务完全不可用。
docker 作为容器的管理者,自然提供了控制容器资源的功能。正如使用内核的 namespace 来做容器之间的隔离,docker 也是通过内核的 cgroups 来做容器的资源限制;包括CPU、内存、磁盘三大方面,基本覆盖了常见的资源配额和使用量控制。
Docker内存控制OOME在linxu系统上,如果内核探测到当前宿主机已经没有可用内存使用,那么会抛出一个OOME(Out Of Memory Exception:内存异常 ),并且会开启killing去杀掉一些进程。
一旦发生OOME,任何进程都有可能被杀死,包括docker daemon在内,为此,docker特地调整了docker daemon的OOM_Odj优先级,以免他被杀掉,但容器的优先级并未被调整。经过系统内部复制的计算后,每个系统进程都会有一个OOM_Score得分,OOM_Odj越高,得分越高,(在docker run的时候可以调整OOM_Odj)得分最高的优先被kill掉,当然,也可以指定一些特定的重要的容器禁止被OMM杀掉,在启动容器时使用 –oom-kill-disable=true指定。
cgroup简介
cgroup是Control Groups的缩写,是Linux 内核提供的一种可以限制、记录、隔离进程组所使用的物理资源(如 cpu、memory、磁盘IO等等) 的机制,被LXC、docker等很多项目用于实现进程资源控制。cgroup将任意进程进行分组化管理的 Linux 内核功能。cgroup本身是提供将进程进行分组化管理的功能和接口的基础结构,I/O 或内存的分配控制等具体的资源管理功能是通过这个功能来实现的。这些具体的资源管理功能称为cgroup子系统,有以下几大子系统实现:
- blkio:设置限制每个块设备的输入输出控制。例如:磁盘,光盘以及usb等等。
- cpu:使用调度程序为cgroup任务提供cpu的访问。
- cpuacct:产生cgroup任务的cpu资源报告。
- cpuset:如果是多核心的cpu,这个子系统会为cgroup任务分配单独的cpu和内存。
- devices:允许或拒绝cgroup任务对设备的访问。
- freezer:暂停和恢复cgroup任务。
- memory:设置每个cgroup的内存限制以及产生内存资源报告。
- net_cls:标记每个网络包以供cgroup方便使用。
- ns:命名空间子系统。
- perf_event:增加了对每group的监测跟踪的能力,即可以监测属于某个特定的group的所有线程以及运行在特定CPU上的线程。
目前docker只是用了其中一部分子系统,实现对资源配额和使用的控制。
可以使用stress工具来测试CPU和内存。使用下面的Dockerfile来创建一个基于Ubuntu的stress工具镜像。
FROM ubuntu:14.04
RUN apt-get update &&apt-get install stress
资源监控的关键目录:cat读出
已使用内存:
/sys/fs/cgroup/memory/docker/应用ID/memory.usage_in_bytes
分配的总内存:
/sys/fs/cgroup/memory/docker/应用ID/memory.limit_in_bytes
已使用的cpu:单位纳秒
/sys/fs/cgroup/cpuacct/docker/应用ID/cpuacct.usage
系统当前cpu:
$ cat /proc/stat | grep 'cpu '(周期/时间片/jiffies)
#得到的数字相加/HZ(cat /boot/config-`uname -r` | grep '^CONFIG_HZ='
ubuntu 14.04为250)就是系统时间(秒)
#再乘以10*9就是系统时间(纳秒)
例子
[~]$ cat /proc/stat
cpu 432661 13295 86656 422145968 171474 233 5346
cpu0 123075 2462 23494 105543694 16586 0 4615
cpu1 111917 4124 23858 105503820 69697 123 371
cpu2 103164 3554 21530 105521167 64032 106 334
cpu3 94504 3153 17772 105577285 21158 4 24
intr 1065711094 1057275779 92 0 6 6 0 4 0 3527 0 0 0 70 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ctxt 19067887
btime 1139187531
processes 270014
procs_running 1
procs_blocked 0
输出解释
CPU 以及CPU0、CPU1、CPU2、CPU3每行的每个参数意思(以第一行为例)为:
参数 解释
user (432661) 从系统启动开始累计到当前时刻,用户态的CPU时间(单位:jiffies) ,不包含 nice值为负进程。
nice (13295) 从系统启动开始累计到当前时刻,nice值为负的进程所占用的CPU时间(单位:jiffies)
system (86656) 从系统启动开始累计到当前时刻,核心时间(单位:jiffies)
idle (422145968) 从系统启动开始累计到当前时刻,除硬盘IO等待时间以外其它等待时间(单位:jiffies)
iowait (171474) 从系统启动开始累计到当前时刻,硬盘IO等待时间(单位:jiffies) ,
irq (233) 从系统启动开始累计到当前时刻,硬中断时间(单位:jiffies)
softirq (5346) 从系统启动开始累计到当前时刻,软中断时间(单位:jiffies)
cpu使用率:
(已使用2-已使用1)/(系统当前2-系统当前1)*100%
内存限制
Docker 提供的内存限制功能有以下几点:
- 容器能使用的内存和交换分区大小。
- 容器的核心内存大小。
- 容器虚拟内存的交换行为。
- 容器内存的软性限制。
- 是否杀死占用过多内存的容器。
- 容器被杀死的优先级
一般情况下,达到内存限制的容器过段时间后就会被系统杀死。
内存限制相关的参数
执行docker run
命令时能使用的和内存限制相关的所有选项如下。
选项 | 描述 |
---|---|
-m ,--memory |
内存限制,格式是数字加单位,单位可以为 b,k,m,g。最小为 4M |
--memory-swap |
内存+交换分区大小总限制。格式同上。必须必-m 设置的大 |
--memory-reservation |
内存的软性限制。格式同上 |
--oom-kill-disable |
是否阻止 OOM killer 杀死容器,默认没设置 |
--oom-score-adj |
容器被 OOM killer 杀死的优先级,范围是[-1000, 1000],默认为 0 |
--memory-swappiness |
用于设置容器的虚拟内存控制行为。值为 0~100 之间的整数 |
--kernel-memory |
核心内存限制。格式同上,最小为 4M |
用户内存限制
用户内存限制就是对容器能使用的内存和交换分区的大小作出限制。使用时要遵循两条直观的规则:-m,--memory
选项的参数最小为 4 M。--memory-swap
不是交换分区,而是内存加交换分区的总大小,所以--memory-swap
必须比-m,--memory
大。在这两条规则下,一般有四种设置方式。
你可能在进行内存限制的实验时发现
docker run
命令报错:WARNING: Your kernel does not support swap limit capabilities, memory limited without swap.这是因为宿主机内核的相关功能没有打开。按照下面的设置就行。
step 1:编辑
/etc/default/grub
文件,将GRUB_CMDLINE_LINUX
一行改为GRUB_CMDLINE_LINUX="cgroup_enable=memory swapaccount=1"
step 2:更新 GRUB,即执行
$ sudo update-grub
step 3: 重启系统。
1. 不设置
如果不设置-m,--memory
和--memory-swap
,容器默认可以用完宿舍机的所有内存和 swap 分区。不过注意,如果容器占用宿主机的所有内存和 swap 分区超过一段时间后,会被宿主机系统杀死(如果没有设置--00m-kill-disable=true
的话)。
2. 设置-m,--memory
,不设置--memory-swap
给-m
或--memory
设置一个不小于 4M 的值,假设为 a,不设置--memory-swap
,或将--memory-swap
设置为 0。这种情况下,容器能使用的内存大小为 a,能使用的交换分区大小也为 a。因为 Docker 默认容器交换分区的大小和内存相同。
如果在容器中运行一个一直不停申请内存的程序,你会观察到该程序最终能占用的内存大小为 2a。
比如$ docker run -m 1G ubuntu:16.04
,该容器能使用的内存大小为 1G,能使用的 swap 分区大小也为 1G。容器内的进程能申请到的总内存大小为 2G。
3. 设置-m,--memory=a
,--memory-swap=b
,且b > a
给-m
设置一个参数 a,给--memory-swap
设置一个参数 b。a 时容器能使用的内存大小,b是容器能使用的 内存大小 + swap 分区大小。所以 b 必须大于 a。b -a 即为容器能使用的 swap 分区大小。
比如$ docker run -m 1G --memory-swap 3G ubuntu:16.04
,该容器能使用的内存大小为 1G,能使用的 swap 分区大小为 2G。容器内的进程能申请到的总内存大小为 3G。
4. 设置-m,--memory=a
,--memory-swap=-1
给-m
参数设置一个正常值,而给--memory-swap
设置成 -1。这种情况表示限制容器能使用的内存大小为 a,而不限制容器能使用的 swap 分区大小。
这时候,容器内进程能申请到的内存大小为 a + 宿主机的 swap 大小。
Memory reservation
这种 memory reservation 机制不知道怎么翻译比较形象。Memory reservation 是一种软性限制,用于节制容器内存使用。给--memory-reservation
设置一个比-m
小的值后,虽然容器最多可以使用-m
使用的内存大小,但在宿主机内存资源紧张时,在系统的下次内存回收时,系统会回收容器的部分内存页,强迫容器的内存占用回到--memory-reservation
设置的值大小。
没有设置时(默认情况下)--memory-reservation
的值和-m
的限定的值相同。将它设置为 0 会设置的比-m
的参数大 等同于没有设置。
Memory reservation 是一种软性机制,它不保证任何时刻容器使用的内存不会超过--memory-reservation
限定的值,它只是确保容器不会长时间占用超过--memory-reservation
限制的内存大小。
例如:
$ docker run -it -m 500M --memory-reservation 200M ubuntu:16.04 /bin/bash
如果容器使用了大于 200M 但小于 500M 内存时,下次系统的内存回收会尝试将容器的内存锁紧到 200M 以下。
例如:
$ docker run -it --memory-reservation 1G ubuntu:16.04 /bin/bash
容器可以使用尽可能多的内存。--memory-reservation
确保容器不会长时间占用太多内存。
OOM killer
默认情况下,在出现 out-of-memory(OOM) 错误时,系统会杀死容器内的进程来获取更多空闲内存。这个杀死进程来节省内存的进程,我们姑且叫它 OOM killer。我们可以通过设置--oom-kill-disable
选项来禁止 OOM killer 杀死容器内进程。但请确保只有在使用了-m/--memory
选项时才使用--oom-kill-disable
禁用 OOM killer。如果没有设置-m
选项,却禁用了 OOM-killer,可能会造成出现 out-of-memory 错误时,系统通过杀死宿主机进程或获取更改内存。
下面的例子限制了容器的内存为 100M 并禁止了 OOM killer:
$ docker run -it -m 100M --oom-kill-disable ubuntu:16.04 /bin/bash
是正确的使用方法。
而下面这个容器没设置内存限制,却禁用了 OOM killer 是非常危险的:
$ docker run -it --oom-kill-disable ubuntu:16.04 /bin/bash
容器没用内存限制,可能或导致系统无内存可用,并尝试时杀死系统进程来获取更多可用内存。
一般一个容器只有一个进程,这个唯一进程被杀死,容器也就被杀死了。我们可以通过--oom-score-adj
选项来设置在系统内存不够时,容器被杀死的优先级。负值更教不可能被杀死,而正值更有可能被杀死。
核心内存
核心内存和用户内存不同的地方在于核心内存不能被交换出。不能交换出去的特性使得容器可以通过消耗太多内存来堵塞一些系统服务。核心内存包括:
- stack pages(栈页面)
- slab pages
- socket memory pressure
- tcp memory pressure
可以通过设置核心内存限制来约束这些内存。例如,每个进程都要消耗一些栈页面,通过限制核心内存,可以在核心内存使用过多时阻止新进程被创建。
核心内存和用户内存并不是独立的,必须在用户内存限制的上下文中限制核心内存。
假设用户内存的限制值为 U,核心内存的限制值为 K。有三种可能地限制核心内存的方式:
- U != 0,不限制核心内存。这是默认的标准设置方式
- K < U,核心内存时用户内存的子集。这种设置在部署时,每个 cgroup 的内存总量被过度使用。过度使用核心内存限制是绝不推荐的,因为系统还是会用完不能回收的内存。在这种情况下,你可以设置 K,这样 groups 的总数就不会超过总内存了。然后,根据系统服务的质量自有地设置 U。
- K > U,因为核心内存的变化也会导致用户计数器的变化,容器核心内存和用户内存都会触发回收行为。这种配置可以让管理员以一种统一的视图看待内存。对想跟踪核心内存使用情况的用户也是有用的。
例如:
$ docker run -it -m 500M --kernel-memory 50M ubuntu:16.04 /bin/bash
容器中的进程最多能使用 500M 内存,在这 500M 中,最多只有 50M 核心内存。
$ docker run -it --kernel-memory 50M ubuntu:16.04 /bin/bash
没用设置用户内存限制,所以容器中的进程可以使用尽可能多的内存,但是最多能使用 50M 核心内存。
Swappiness
默认情况下,容器的内核可以交换出一定比例的匿名页。--memory-swappiness
就是用来设置这个比例的。--memory-swappiness
可以设置为从 0 到 100。0 表示关闭匿名页面交换。100 表示所有的匿名页都可以交换。默认情况下,如果不适用--memory-swappiness
,则该值从父进程继承而来。
例如:
$ docker run -it --memory-swappiness=0 ubuntu:16.04 /bin/bash
将--memory-swappiness
设置为 0 可以保持容器的工作集,避免交换代理的性能损失。
$ docker run -tid —name mem1 —memory 128m ubuntu:16.04 /bin/bash
$ cat /sys/fs/cgroup/memory/docker/<容器的完整ID>/memory.limit_in_bytes
$ cat /sys/fs/cgroup/memory/docker/<容器的完整ID>/memory.memsw.limit_in_bytes
CPU 限制
概述
Docker 的资源限制和隔离完全基于 Linux cgroups。对 CPU 资源的限制方式也和 cgroups 相同。Docker 提供的 CPU 资源限制选项可以在多核系统上限制容器能利用哪些 vCPU。而对容器最多能使用的 CPU 时间有两种限制方式:一是有多个 CPU 密集型的容器竞争 CPU 时,设置各个容器能使用的 CPU 时间相对比例。二是以绝对的方式设置容器在每个调度周期内最多能使用的 CPU 时间。
CPU 限制相关参数
docker run
命令和 CPU 限制相关的所有选项如下:
选项 | 描述 |
---|---|
--cpuset-cpus="" |
允许使用的 CPU 集,值可以为 0-3,0,1 |
-c ,--cpu-shares=0 |
CPU 共享权值(相对权重) |
cpu-period=0 |
限制 CPU CFS 的周期,范围从 100ms~1s,即[1000, 1000000] |
--cpu-quota=0 |
限制 CPU CFS 配额,必须不小于1ms,即 >= 1000 |
--cpuset-mems="" |
允许在上执行的内存节点(MEMs),只对 NUMA 系统有效 |
其中--cpuset-cpus
用于设置容器可以使用的 vCPU 核。-c
,--cpu-shares
用于设置多个容器竞争 CPU 时,各个容器相对能分配到的 CPU 时间比例。--cpu-period
和--cpu-quata
用于绝对设置容器能使用 CPU 时间。
--cpuset-mems
暂用不上,这里不谈。
CPU 集
我们可以设置容器可以在哪些 CPU 核上运行。
例如:
$ docker run -it --cpuset-cpus="1,3" ubuntu:14.04 /bin/bash
表示容器中的进程可以在 cpu 1 和 cpu 3 上执行。
$ docker run -it --cpuset-cpus="0-2" ubuntu:14.04 /bin/bash
$ cat /sys/fs/cgroup/cpuset/docker/<容器的完整长ID>/cpuset.cpus
表示容器中的进程可以在 cpu 0、cpu 1 及 cpu 3 上执行。
在 NUMA 系统上,我们可以设置容器可以使用的内存节点。
例如:
$ docker run -it --cpuset-mems="1,3" ubuntu:14.04 /bin/bash
表示容器中的进程只能使用内存节点 1 和 3 上的内存。
$ docker run -it --cpuset-mems="0-2" ubuntu:14.04 /bin/bash
表示容器中的进程只能使用内存节点 0、1、2 上的内存。
CPU 资源的相对限制
默认情况下,所有的容器得到同等比例的 CPU 周期。在有多个容器竞争 CPU 时我们可以设置每个容器能使用的 CPU 时间比例。这个比例叫作共享权值,通过-c
或--cpu-shares
设置。Docker 默认每个容器的权值为 1024。不设置或将其设置为 0,都将使用这个默认值。系统会根据每个容器的共享权值和所有容器共享权值和比例来给容器分配 CPU 时间。
假设有三个正在运行的容器,这三个容器中的任务都是 CPU 密集型的。第一个容器的 cpu 共享权值是 1024,其它两个容器的 cpu 共享权值是 512。第一个容器将得到 50% 的 CPU 时间,而其它两个容器就只能各得到 25% 的 CPU 时间了。如果再添加第四个 cpu 共享值为 1024 的容器,每个容器得到的 CPU 时间将重新计算。第一个容器的CPU 时间变为 33%,其它容器分得的 CPU 时间分别为 16.5%、16.5%、33%。
必须注意的是,这个比例只有在 CPU 密集型的任务执行时才有用。在四核的系统上,假设有四个单进程的容器,它们都能各自使用一个核的 100% CPU 时间,不管它们的 cpu 共享权值是多少。
在多核系统上,CPU 时间权值是在所有 CPU 核上计算的。即使某个容器的 CPU 时间限制少于 100%,它也能使用各个 CPU 核的 100% 时间。
例如,假设有一个不止三核的系统。用-c=512
的选项启动容器{C0}
,并且该容器只有一个进程,用-c=1024
的启动选项为启动容器C2
,并且该容器有两个进程。CPU 权值的分布可能是这样的:
PID container CPU CPU share
100 {C0} 0 100% of CPU0
101 {C1} 1 100% of CPU1
102 {C1} 2 100% of CPU2
$ docker run -it --cpu-shares=100 ubuntu:14.04 /bin/bash
$ cat /sys/fs/cgroup/cpu/docker/<容器的完整长ID>/cpu.shares
表示容器中的进程CPU份额值为100。
CPU 资源的绝对限制
Linux 通过 CFS(Completely Fair Scheduler,完全公平调度器)来调度各个进程对 CPU 的使用。CFS 默认的调度周期是 100ms。
关于 CFS 的更多信息,参考CFS documentation on bandwidth limiting。
我们可以设置每个容器进程的调度周期,以及在这个周期内各个容器最多能使用多少 CPU 时间。使用--cpu-period
即可设置调度周期,使用--cpu-quota
即可设置在每个周期内容器能使用的 CPU 时间。两者一般配合使用。
例如:
$ docker run -it --cpu-period=50000 --cpu-quota=25000 ubuntu:16.04 /bin/bash
将 CFS 调度的周期设为 50000,将容器在每个周期内的 CPU 配额设置为 25000,表示该容器每 50ms 可以得到 50% 的 CPU 运行时间。
$ docker run -it --cpu-period=10000 --cpu-quota=20000 ubuntu:16.04 /bin/bash
$ cat /sys/fs/cgroup/cpu/docker/<容器的完整长ID>/cpu.cfs_period_us
$ cat /sys/fs/cgroup/cpu/docker/<容器的完整长ID>/cpu.cfs_quota_us
将容器的 CPU 配额设置为 CFS 周期的两倍,CPU 使用时间怎么会比周期大呢?其实很好解释,给容器分配两个 vCPU 就可以了。该配置表示容器可以在每个周期内使用两个 vCPU 的 100% 时间。
CFS 周期的有效范围是 1ms~1s,对应的--cpu-period
的数值范围是 1000~1000000。而容器的 CPU 配额必须不小于 1ms,即--cpu-quota
的值必须 >= 1000。可以看出这两个选项的单位都是 us。
正确的理解“绝对”
注意前面我们用--cpu-quota
设置容器在一个调度周期内能使用的 CPU 时间时实际上设置的是一个上限。并不是说容器一定会使用这么长的 CPU 时间。比如,我们先启动一个容器,将其绑定到 cpu 1 上执行。给其--cpu-quota
和--cpu-period
都设置为 50000。
$ docker run --rm --name test01 --cpu-cpus 1 --cpu-quota=50000 --cpu-period=50000 deadloop:busybox-1.25.1-glibc
调度周期为 50000,容器在每个周期内最多能使用 50000 cpu 时间。
再用docker stats test01
可以观察到该容器对 CPU 的使用率在100%左右。然后,我们再以同样的参数启动另一个容器。
$ docker run --rm --name test02 --cpu-cpus 1 --cpu-quota=50000 --cpu-period=50000 deadloop:busybox-1.25.1-glibc
再用docker stats test01 test02
可以观察到这两个容器,每个容器对 cpu 的使用率在 50% 左右。说明容器并没有在每个周期内使用 50000 的 cpu 时间。
使用docker stop test02
命令结束第二个容器,再加一个参数-c 2048
启动它:
$ docker run --rm --name test02 --cpu-cpus 1 --cpu-quota=50000 --cpu-period=50000 -c 2048 deadloop:busybox-1.25.1-glibc
再用docker stats test01
命令可以观察到第一个容器的 CPU 使用率在 33% 左右,第二个容器的 CPU 使用率在 66% 左右。因为第二个容器的共享值是 2048,第一个容器的默认共享值是 1024,所以第二个容器在每个周期内能使用的 CPU 时间是第一个容器的两倍。
磁盘IO配额控制
相对于CPU和内存的配额控制,docker对磁盘IO的控制相对不成熟,大多数都必须在有宿主机设备的情况下使用。主要包括以下参数:
- –device-read-bps:限制此设备上的读速度(bytes per second),单位可以是kb、mb或者gb。
- –device-read-iops:通过每秒读IO次数来限制指定设备的读速度。
- –device-write-bps :限制此设备上的写速度(bytes per second),单位可以是kb、mb或者gb。
- –device-write-iops:通过每秒写IO次数来限制指定设备的写速度。
- –blkio-weight:容器默认磁盘IO的加权值,有效值范围为10-100。
- –blkio-weight-device: 针对特定设备的IO加权控制。其格式为DEVICE_NAME:WEIGHT
存储配额控制的相关参数,可以参考Red Hat文档中blkio这一章,了解它们的详细作用。
磁盘IO配额控制示例
blkio-weight
要使–blkio-weight生效,需要保证IO的调度算法为CFQ。可以使用下面的方式查看:
root@ubuntu:~# cat /sys/block/sda/queue/scheduler
noop [deadline] cfq
使用下面的命令创建两个–blkio-weight值不同的容器:
docker run -ti –rm –blkio-weight 100 ubuntu:stress
docker run -ti –rm –blkio-weight 1000 ubuntu:stress
在容器中同时执行下面的dd命令,进行测试:
time dd if=/dev/zero of=test.out bs=1M count=1024 oflag=direct
最终输出如下图所示:
在我的测试环境上没有达到理想的测试效果,通过docker官方的blkio-weight doesn’t take effect in docker Docker
version 1.8.1 #16173,可以发现这个问题在一些环境上存在,但docker官方也没有给出解决办法。
device-write-bps
使用下面的命令创建容器,并执行命令验证写速度的限制。
docker run -tid –name disk1 –device-write-bps /dev/sda:1mb ubuntu:stress
通过dd来验证写速度,输出如下图示:
可以看到容器的写磁盘速度被成功地限制到了1MB/s。device-read-bps等其他磁盘IO限制参数可以使用类似的方式进行验证。
容器空间大小限制
在docker使用devicemapper作为存储驱动时,默认每个容器和镜像的最大大小为10G。如果需要调整,可以在daemon启动参数中,使用dm.basesize来指定,但需要注意的是,修改这个值,不仅仅需要重启docker daemon服务,还会导致宿主机上的所有本地镜像和容器都被清理掉。
使用aufs或者overlay等其他存储驱动时,没有这个限制。
Docker(二十)-Docker容器CPU、memory资源限制的更多相关文章
- Docker(二十六)-Docker Compose编排容器
1. 前言 Docker Compose 是 Docker 容器进行编排的工具,定义和运行多容器的应用,可以一条命令启动多个容器. 使用Compose 基本上分为三步: Dockerfile 定义应用 ...
- Docker(二十五)-Docker Machine
Docker Machine 是什么? Docker Machine 是 Docker 官方提供的一个工具,它可以帮助我们在远程的机器上安装 Docker,或者在虚拟机 host 上直接安装虚拟机并在 ...
- 【Docker】使用Docker Client和Docker Go SDK为容器分配GPU资源
目录 背景 使用 Docker Client 调用 GPU 依赖安装 安装 Docker 安装 NVIDIA Container Toolkit¶ --gpus 用法 使用 Docker Go SDK ...
- Docker(二十二)-Docker Swarm常用命令
#查看集群节点 docker node ls #创建nginx服务 #docker pull hub.test.com:5000/almi/nginx:0.1 #下载私有仓库镜像 docker ser ...
- 进击的docker 二 : docker 快速入门
1.安装docker 1.1.安装环境 [root@docker ~]# cat /etc/redhat-release CentOS Linux release (Core) [root@docke ...
- Docker(二十一)-Docker Swarm集群部署
介绍 Swarm 在 Docker 1.12 版本之前属于一个独立的项目,在 Docker 1.12 版本发布之后,该项目合并到了 Docker 中,成为 Docker 的一个子命令.目前,Swarm ...
- Docker(二十七)-Docker 清理占用的磁盘空间
1. docker system命令 docker system df命令,类似于Linux上的df命令,用于查看Docker的磁盘使用情况: docker system dfTYPE TOTAL A ...
- Docker(二):Docker入门教程
前言 Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从Apache2.0协议开源. Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然后发布到任何流行的 ...
- Docker(二):Docker镜像仓库Harbor搭建
安装docker-compose 因为docker-compose下载容易失败, 所以选择从github下载方式安装. [root@harbor ~]# mv docker-compose-Linux ...
随机推荐
- SSM 搭建精美实用的管理系统
课程介绍 SSM 框架即 SpringMVC+Spring+Mybatis,相信各位朋友在投递简历时已直观感受到它的重要性,JavaWeb 相关工作的招聘要求中基本都包括了这三项技术能力. 由于其轻量 ...
- 如何优雅地使用Sublime Text3(转)
转自http://www.jianshu.com/p/3cb5c6f2421c/ Sublime Text:一款具有代码高亮.语法提示.自动完成且反应快速的编辑器软件,不仅具有华丽的界面,还支持插件扩 ...
- SpringBoot实战(十四)之整合KafKa
本人今天上午参考了不少博文,发现不少博文不是特别好,不是因为依赖冲突问题就是因为版本问题. 于是我结合相关的博文和案例,自己改写了下并参考了下,于是就有了这篇文章.希望能够给大家帮助,少走一些弯路. ...
- [转]ubuntu下解压zip文件
1.功能作用:解压缩zip文件 2.位置:/usr/bin/unzip 3.格式用法:unzip [-Z] [-opts[modifiers]] file[.zip] [list] [-x xlist ...
- java 文件字节和字符流 缓冲流
流的原理 1) 在 Java 程序中,对于数据的输入/输出操作以“流”(stream) 方式进行:2) J2SDK 提供了各种各样的“流”类,用以获取不同种类的数据:程序中通过标准的方法输入或输出数据 ...
- Linux命令——cat/less/more的区别
cat命令:用于显示整个文件的内容,单独使用没有翻页功能,经常和 more 命令搭配使用,cat 命令还可以将数个文件合并成一个文件. more命令:让画面在显示满一页时暂停,此时可按空格健继续显示下 ...
- Android2.3系统 自定义的PopupWindow在实例化时报空指针异常
情况:是这样的,前段时间做了一个自定义的PopupWindow,就是写一个类,然后继承PopupWindow,别的什么操作都没有,但是在实例化的时候,在2.3系统中直接就报空指针异常(4.0及以上系统 ...
- (转)tomcat 修改默认访问项目名称和项目发布路径
1.项目发布路径 <Host name="localhost" appBase="webapps" unpackWARs="true" ...
- Image Restoration[Deep Image Prior]
0.背景 这篇论文是2017年11月29号第一次提交到arxiv并紧接着30号就提交了V2版本的. 近些年DCNN模型在图像生成和修复上面表现很好,大部分人认为好的原因主要是由于网络基于大量的图片训练 ...
- HNOI2015做题笔记
HNOI2015 亚瑟王(概率DP) 根据期望的线性性,我们只需要算出每一种卡牌触发的概率就可以算出期望的值 考虑与第\(i\)张卡牌触发概率相关的量,除了\(p_i\)还有前\(i-1\)张卡牌中触 ...