已知方程$x^3-x^2-x+1=0$,的三根根为$a,b,c$,
若$k_n=\dfrac{a^n-b^n}{a-b}+\dfrac{b^n-c^n}{b-c}+\dfrac{c^n-a^n}{c-a}$

证明:$\{k_n\}$为整数数列。


提示:注意到$x^3=x^2+x+1$故

$a^{n+1}=a^n+a^{n-1}+a^{n-2}$
$b^{n+1}=b^n+b^{n-1}+b^{n-2}$
$c^{n+1}=c^n+c^{n-1}+c^{n-2}$
从而可得$k^{n+1}=k^n+k^{n-1}+k^{n-2}$,由$k_0=0,k_1=3,k_2=2$数归可得证.

MT【206】证明整数数列的更多相关文章

  1. 2018.3.12 Leecode习题 给定一个整数数列,找出其中和为特定值的那两个数。

    给定一个整数数列,找出其中和为特定值的那两个数. 你可以假设每个输入都只会有一种答案,同样的元素不能被重用. 示例: 给定 nums = [2, 7, 11, 15], target = 9; 因为 ...

  2. MT【71】数列裂项放缩题

    已知${a_n}$满足$a_1=1,a_{n+1}=(1+\frac{1}{n^2+n})a_n.$证明:当$n\in N^+$时, $(1)a_{n+1}>a_n.(2)\frac{2n}{n ...

  3. 洛谷 P1356 数列的整数性 解题报告

    P1356 数列的整数性 题目描述 对于任意一个整数数列,我们可以在每两个整数中间任意放一个符号'+'或'-',这样就可以构成一个表达式,也就可以计算出表达式的值.比如,现在有一个整数数列:17,5, ...

  4. luogu P1356 数列的整数性 |动态规划

    题目描述 对于任意一个整数数列,我们可以在每两个整数中间任意放一个符号'+'或'-',这样就可以构成一个表达式,也就可以计算出表达式的值.比如,现在有一个整数数列:17,5,-2,-15,那么就可以构 ...

  5. HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Li ...

  6. 1976 Queen数列

    1976 Queen数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 将1到N的整数数列(1 ...

  7. CCF真题之数列分段

    201509-1  数列分段 问题描述 给定一个整数数列,数列中连续相同的最长整数序列算成一段,问数列中共有多少段? 输入格式 输入的第一行包含一个整数n,表示数列中整数的个数. 第二行包含n个整数a ...

  8. HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  9. HDU----(4549)M斐波那契数列(小费马引理+快速矩阵幂)

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

随机推荐

  1. angularjs呼叫Web API

    今早有分享一篇<创建Web API并使用>http://www.cnblogs.com/insus/p/7771428.html 接下来,我再分享一篇,怎样在angularjs去呼叫Web ...

  2. LinqPad的变量比较功能

    LinqPad是一个非常方便的C#工具(有免费版和收费版). 今天发现它的变量比较功能真是方便啊.且看3行代码产生如下结果: 说明:图中两个变量的成员属性值分别用红色和绿色背景标注:图很长,只截取了一 ...

  3. java异步编程降低延迟

    目录 java异步编程降低延迟 一.ExecutorService和CompletionService 二.CompletableFuture(重要) 三.stream中的parallel(并行流) ...

  4. git 提交新增文件到网站

    git add -A 是将所有的修改都提交.你可以用git status查看当前的变化,然后通过git add xxx有选择的提交.git commit 是将变化先提交到本地.git commit - ...

  5. NOIP2018题解

    Preface 联赛结束后趁着自己还没有一下子把题目忘光,所以趁机改一下题目. 没有和游记一起写主要是怕篇幅太长不美观. 因此这里我们直接讲题目,关于NOIP2018的一些心得和有趣的事详见:NOIP ...

  6. vue-cli 3.0 axios 跨域请求代理配置及生产环境 baseUrl 配置

    1. 开发环境跨域配置 在 vue.config.js 文件中: module.exports = { runtimeCompiler: true, publicPath: '/', // 设置打包文 ...

  7. Item 9: 比起typedef更偏爱别名声明(alias declaration)

    本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 我确信我们都同意使用STL容器是一个好主意,并且我希望在Item ...

  8. vs2017+opencv4.0.1安装配置详解(win10)

    一.说明 笔者之前已经安装过了vs2017,对应的opencv是3.4.0版本的.但现在想体验下opencv4的改变之处,所以下载了最新的opencv4.0.1. vs2017的安装请自行搜索安装,本 ...

  9. require.ensure的用法;异步加载-代码分割;

    webpack异步加载的原理 webpack ensure相信大家都听过.有人称它为异步加载,也有人说做代码切割,那这 个家伙到底是用来干嘛的?其实说白了,它就是把js模块给独立导出一个.js文件的, ...

  10. 《Linux内核设计与实现》读书笔记 18

    第十八章调试 18.1 准备开始 一个bug:大部分bug通常都不是行为可靠而且定义明确的 一个藏匿bug的内核版本:找出bug首先出现的版本 相关内核代码的知识和运气 18.2内核中的bug 可以有 ...