已知方程$x^3-x^2-x+1=0$,的三根根为$a,b,c$,
若$k_n=\dfrac{a^n-b^n}{a-b}+\dfrac{b^n-c^n}{b-c}+\dfrac{c^n-a^n}{c-a}$

证明:$\{k_n\}$为整数数列。


提示:注意到$x^3=x^2+x+1$故

$a^{n+1}=a^n+a^{n-1}+a^{n-2}$
$b^{n+1}=b^n+b^{n-1}+b^{n-2}$
$c^{n+1}=c^n+c^{n-1}+c^{n-2}$
从而可得$k^{n+1}=k^n+k^{n-1}+k^{n-2}$,由$k_0=0,k_1=3,k_2=2$数归可得证.

MT【206】证明整数数列的更多相关文章

  1. 2018.3.12 Leecode习题 给定一个整数数列,找出其中和为特定值的那两个数。

    给定一个整数数列,找出其中和为特定值的那两个数. 你可以假设每个输入都只会有一种答案,同样的元素不能被重用. 示例: 给定 nums = [2, 7, 11, 15], target = 9; 因为 ...

  2. MT【71】数列裂项放缩题

    已知${a_n}$满足$a_1=1,a_{n+1}=(1+\frac{1}{n^2+n})a_n.$证明:当$n\in N^+$时, $(1)a_{n+1}>a_n.(2)\frac{2n}{n ...

  3. 洛谷 P1356 数列的整数性 解题报告

    P1356 数列的整数性 题目描述 对于任意一个整数数列,我们可以在每两个整数中间任意放一个符号'+'或'-',这样就可以构成一个表达式,也就可以计算出表达式的值.比如,现在有一个整数数列:17,5, ...

  4. luogu P1356 数列的整数性 |动态规划

    题目描述 对于任意一个整数数列,我们可以在每两个整数中间任意放一个符号'+'或'-',这样就可以构成一个表达式,也就可以计算出表达式的值.比如,现在有一个整数数列:17,5,-2,-15,那么就可以构 ...

  5. HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Li ...

  6. 1976 Queen数列

    1976 Queen数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 将1到N的整数数列(1 ...

  7. CCF真题之数列分段

    201509-1  数列分段 问题描述 给定一个整数数列,数列中连续相同的最长整数序列算成一段,问数列中共有多少段? 输入格式 输入的第一行包含一个整数n,表示数列中整数的个数. 第二行包含n个整数a ...

  8. HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  9. HDU----(4549)M斐波那契数列(小费马引理+快速矩阵幂)

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

随机推荐

  1. odoo中的ORM操作

    ORM方法简介 OpenERP的关键组件, ORM是一个完整的对象关系映射层,是开发人员不必编写基本的SQL管道. 业务对象被声明继承字models.Models的python类. 这让业务对象在OR ...

  2. Ionic App ActionSheet布局问题

    使用 $ionicActionSheet的时候界面不像Ihpnoe手机那样显示的整齐,但是在电脑浏览器里面却是好的,原因还是Ionic自带css的问题,网上的答案是ionic.min.css/ioni ...

  3. [数据可视化之一]Pandas单变量画图

    Pandas单变量画图 Bar Chat Line Chart Area Chart Histogram df.plot.bar() df.plot.line() df.plot.area() df. ...

  4. CF1146 Forethought Future Cup Elimination Round Tutorial

    CF1146 Forethought Future Cup Elimination Round Tutorial 叮,守夜冠军卡 https://codeforces.com/blog/entry/6 ...

  5. GATT服务搜索流程(一)

    GATT的规范阅读起来还是比较简答, 但是这样的规范在代码上是如何实现的呢?下面就分析一下bluedroid 协议栈关于GATT的代码流程. BLE的设备都是在SMP之后进行ATT的流程的交互.从代码 ...

  6. Ubuntu16.04下安装破解secureCRT和secureFX的操作记录

    本地电脑之前安装的是win10,疲于win10频繁的更新和各种兼容问题,果断放弃win10系统,安装了Ubuntu 16.04系统,现在微信.QQ.钉钉.WPS等都已支持linux版本,所以在Ubun ...

  7. windows平台下编辑的内容传到linux平台出现中文乱码的解决办法

    现象说明:在windows下编辑的内容,上传到linux平台下出现中文乱码.如下: 在windows平台编写haha.txt文件,内容如下: 上传到linux平台,出现中文乱码,如下: 基本上面出现的 ...

  8. javaScript常用API合集

    节点 1.1 节点属性 Node.nodeName   //返回节点名称,只读 Node.nodeType   //返回节点类型的常数值,只读 Node.nodeValue  //返回Text或Com ...

  9. Wannafly挑战赛25 B.面积并

    链接 [https://www.nowcoder.com/acm/contest/197/B] 分析 特殊优先考虑 首先考虑r>=l这种情况就是圆的面积了 第二就是r<=内切圆的半径,这个 ...

  10. 个人实验 github地址:https://github.com/quchengyu/cher

    一.实践目的 1.掌握类的定义,对象的创建. 2.掌握实现封装.继承.多态的方法,掌握各种修饰符的使用. 3.掌握将对象数组作为方法的参数和返回值. 4.掌握抽象类与接口的概念及实现,理解动态绑定机制 ...