什么是crf

利用crf++进行实体识别的流程

  1. 确定标签体系;
  2. 确定特征模板文件;
  3. 处理训练数据文件;
  4. 模型训练。

确定标签体系

大部分情况下,标签体系越复杂准确度也越高,但相应的训练时间也会增加。因此需要根据实际情况选择合适的标签体系。

确定模板文件

特征模版是一个文本文件,其内容如下所示,其中每行表示一个特征。如下模板使用了unigram特征,并且仅以字符本身作为特征而不考虑其他特征。除当前字符外,还使用了其前后3个字,以及上下文的组合作为特征。CRF++会根据特征模版生成相关的特征函数。关于特征模版的详细解释可以查看官网文档,并且对于特征的选择和设计可以灵活配置。

#Unigram
U00:%x[-2,0]
U01:%x[-1,0]
U02:%x[0,0]
U03:%x[1,0]
U04:%x[2,0]
U5:%x[-2,0]/%x[-1,0]
U6:%x[-1,0]/%x[0,0]
U7:%x[0,0]/%x[1,0]
U8:%x[1,0]/%x[2,0]

处理训练数据文件

CRF模型的训练数据是一行一个token,一句话由多行token组成,如下图所示。

训练数据及测试数据

a) 训练命令:crf_learn template_file train_file model

其中template_file是模板文件,train_file是训练语料,都需要事先准备好;model是CRF++根据模板和训练语料生成的文件,用于解码。

b) 测试命令:crf_test -m model_file test_file > result_file

其中 model_file是刚才生成的model文件,test_file是待测试语料,“>result_file”是重定向语句,指将屏幕输出直接输出到文件result_file中。

结合规则进行改进

  1. 同一实体内不同字间的类型不同,则以字类数较多者为
  2. 实体开头的字必定为B-???格式
  3. 实体的开始和结尾都有特定的特征可以遵循(如停用词、动词等作为分界等)
  4. 固定实体后跟实体应为B-???格式(如省名后)
  5. 5. 实体间间隔较小时可能合并为同一实体

结合分词及词性标注进行改进

看来单从字的角度着眼已然不够,于是试图利用分词和词性标注信息。利用工具对文本进行分词标注,每一行的token仍然是以单字为特征,中间加入词性的信息如下图所示。针对这样的信息构建新的模板,利用中间一列的信息,可以提高准确率。

大神实验结果对照表

crf++的使用方法

CRF++是著名的条件随机场开源工具,也是目前综合性能最佳的CRF工具。Windows版的无须安装,直接解压即可使用。

训练语料格式

训练语料至少应具有两列,列间由空格或制表位间隔,且所有行(空行除外)必须具有相同的列数。句子间使用空行间隔。

如:

i. 有两列特征的

太 Sd N

短 Sa N

而 Bu N

已 Eu N

。 Sw N

以 Sp N

家 Bn N

乡 En N

的 Su N

ii. 只有一列特征的

太 N

短 N

而 N

已 N

。 N

以 N

家 N

乡 N

的 N

特征的选取及模板的编写

a) 特征选取的行是相对的,列是绝对的,一般选取相对行前后m行,选取n-1列(假设语料总共有n列),特征表示方法为:%x[行,列],行列的初始位置都为0。例如:

i. 以前面语料为例

“ Sw N

北 Bns B-LOC

京 Mns I-LOC

市 Ens I-LOC

首 Bn N

假设当前行为“京”字这一行,那么特征可以这样选取:

结合深度学习的方法

随着深度学习的兴起,RNN、LSTM、BILSTM等模型已经被证明在NLP任务上有着良好的表现。相比传统模型,RNN能够考虑长远的上下文信息,并且能够解决CRF特征选择的问题,可以将主要的精力花在网络设计和参数调优上,但RNN一般需要较大的训练数据,在小规模数据集上,CRF表现较好。在学术界,目前比较流行的做法是将BILISTM和CRF进行结合,借鉴两个模型各自的优点,来达到更好的效果。

总结

本文只是大概介绍了crf++进行实体识别的一些思路,要真正理解还需要多去实践。

References

统计学习方法.李航

CRF++的简单使用 - Felomeng的技术博客 - CSDN博客

条件随机场(CRF)识别命名实体 - Felomeng的技术博客 - CSDN博客

达观数据如何打造一个中文NER系统 - 知乎专栏

CRF++模型格式说明-码农场

什么是crf的更多相关文章

  1. 【NLP】基于自然语言处理角度谈谈CRF(二)

    基于自然语言处理角度谈谈CRF 作者:白宁超 2016年8月2日21:25:35 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务 ...

  2. 【NLP】基于机器学习角度谈谈CRF(三)

    基于机器学习角度谈谈CRF 作者:白宁超 2016年8月3日08:39:14 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都 ...

  3. 【NLP】基于统计学习方法角度谈谈CRF(四)

    基于统计学习方法角度谈谈CRF 作者:白宁超 2016年8月2日13:59:46 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务 ...

  4. 【中文分词】条件随机场CRF

    之前介绍的MMEM存在着label bias问题,因此Lafferty et al. [1] 提出了CRF (Conditional Random Field). BTW:比较有意思的是,这篇文章的二 ...

  5. JointBoost+CRF+GraphCut做手绘草图的分割

    研究生做的稍微有点水平的就这两个项目了:一个是利用SVM做手绘草图的分类,另一个是利用JointBoost+CRF做手绘草图的分割.总结得出的经验是做研究的方法就是将别人大神的代码看懂然后改成适合自己 ...

  6. 条件随机场(CRF) - 2 - 定义和形式(转载)

    转载自:http://www.68idc.cn/help/jiabenmake/qita/20160530618218.html 参考书本: <2012.李航.统计学习方法.pdf> 书上 ...

  7. 条件随机场(CRF) - 1 - 简介(转载)

    转载自:http://www.68idc.cn/help/jiabenmake/qita/20160530618222.html 首先我们先弄懂什么是"条件随机场",然后再探索其详 ...

  8. 机器学习&数据挖掘笔记_23(PGM练习七:CRF中参数的学习)

    前言: 本次实验主要任务是学习CRF模型的参数,实验例子和PGM练习3中的一样,用CRF模型来预测多张图片所组成的单词,我们知道在graph model的推理中,使用较多的是factor,而在grap ...

  9. CRF++使用小结

    1. 简述 最近要应用CRF模型,进行序列识别.选用了CRF++工具包,具体来说是在VS2008的C#环境下,使用CRF++的windows版本.本文总结一下了解到的和CRF++工具包相关的信息. 参 ...

  10. CRF条件随机场简介

    CRF(Conditional Random Field) 条件随机场是近几年自然语言处理领域常用的算法之一,常用于句法分析.命名实体识别.词性标注等.在我看来,CRF就像一个反向的隐马尔可夫模型(H ...

随机推荐

  1. 一起学Hadoop——使用IDEA编写第一个MapReduce程序(Java和Python)

    上一篇我们学习了MapReduce的原理,今天我们使用代码来加深对MapReduce原理的理解. wordcount是Hadoop入门的经典例子,我们也不能免俗,也使用这个例子作为学习Hadoop的第 ...

  2. Codeforces 802I Fake News (hard) (SA+单调栈) 或 SAM

    原文链接http://www.cnblogs.com/zhouzhendong/p/9026184.html 题目传送门 - Codeforces 802I 题意 求一个串中,所有本质不同子串的出现次 ...

  3. POJ3074 Sudoku 舞蹈链 DLX

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目(传送门) 题意概括 给出一个残缺的数独,求解. 题解 DLX + 矩阵构建  (两个传送门) 代码 #include & ...

  4. Centos7使用yum命令安装Mysql5.6.X

    首先:具体的安装步骤在mysql官方文档上都有详细的描述. 文档虽然是英文,不过很容易理解,我就不一一翻译了. 官方文档地址:https://dev.mysql.com/doc/refman/5.6/ ...

  5. 【python】数据库

    No1: [SQLite] 插入 # 导入SQLite驱动: >>> import sqlite3 # 连接到SQLite数据库 # 数据库文件是test.db # 如果文件不存在, ...

  6. Codeforces 1131F Asya And Kittens (构造)【并查集】

    <题目链接> 题目大意:有$n$只小猫,开始将它们放在指定的n个单元格内,然后随机从n-1个隔板中拆除隔板,最终使得这些小猫在同一单元格.现在依次给出拆除隔板的顺序,比如:1 4 就表示1 ...

  7. P2158 [SDOI2008]仪仗队

    P2158 [SDOI2008]仪仗队图是关于y=x对称的,横纵坐标一定是互质的否则在之前就被扫过了,所以就可以用欧拉函数再*2就完了. #include<iostream> #inclu ...

  8. AngularJS的Scope和Digest

    Angular是一个成熟和强大的JavaScript框架.它也是一个比较庞大的框架,在熟练掌握之前,需要领会它提出的很多新概念.很多Web开发人员涌向Angular,有不少人面临同样的障碍.Diges ...

  9. angular笔记_1

    第一个angular文件<script src="http://cdn.static.runoob.com/libs/angular.js/1.4.6/angular.min.js&q ...

  10. CodeForces round 967 div2 题解(A~E)

    本来准备比完赛就写题解的, 但是一拖拖了一星期, 唉 最后一题没搞懂怎么做,恳请大神指教 欢迎大家在评论区提问. A Mind the Gap 稳定版题面 https://cn.vjudge.net/ ...