[poj P1141] Brackets Sequence

Time Limit: 1000MS   Memory Limit: 65536K   Special Judge

Description

Let us define a regular brackets sequence in the following way:

1. Empty sequence is a regular sequence. 
2. If S is a regular sequence, then (S) and [S] are both regular sequences. 
3. If A and B are regular sequences, then AB is a regular sequence.

For example, all of the following sequences of characters are regular brackets sequences:

(), [], (()), ([]), ()[], ()[()]

And all of the following character sequences are not:

(, [, ), )(, ([)], ([(]

Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.

Input

The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.

Output

Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.

Sample Input

([(]

Sample Output

()[()]

Source

Northeastern Europe 2001

括号匹配的变形题。

这题的范围,非常的适合区间dp。

那么我们来设计一个dp。设f[i][j]为将原串中i~j全部匹配好需要增加的字符数量。

则:

先赋值正无穷。

对于j-i+1==1 ---> f[i][j]=1

对于j-i+1==2 ---> f[i][j]=cmp(a[i],a[j])?0:2

对于j-i+1>=3 ---> f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]),if (cmp(a[i],a[j])) f[i][j]=min(f[i][j],f[i+1][j-1])

其中cmp代表两个字符是否匹配。

那么这样,就轻松计算出了f[1][n]。

这一题要让我们输出方案。

一般dp的题都可以用dfs递归输出方案。

具体实现应该很好想吧!但是有些细节和顺序容易搞错。

下面先给出几组数据(不一定完全相同,有spj没关系):

in1:

[]]]]

out1:

[][][][]

in2:

)))(((

out2:

()()()()()()

in3:

“空串”

out3:

“空串”

in4:

([][]([]()))[()]([])

out4:

([][]([]()))[()]([])

code:

 #include<cstdio>
 #include<cstring>
 #include<algorithm>
 #include<iostream>
 using namespace std;
 ;
 int n,f[N][N]; char a[N]; bool vis[N];
 int cmp(int x,int y) {
     ;
     ;
     ;
 }
 void dfs(int l,int r) {
     if (l>r) return;
     if (l==r) {
         if (vis[l]||vis[r]) return;
         if (a[l]=='(') printf("()"); else
         if (a[l]==')') printf("()"); else
         if (a[l]=='[') printf("[]"); else
         if (a[l]==']') printf("[]");
         vis[l]=vis[r]=;
         return;
     }
     for (int i=l; i<r; i++)
         ][r]==f[l][r]) {dfs(l,i),dfs(i+,r); return;}
     if (cmp(l,r)) {
         vis[l]=vis[r]=;
         printf("%c",a[l]);
         dfs(l+,r-);
         printf("%c",a[r]);
         return;
     }
 }
 int main() {
     scanf(),n=strlen(a+);
     ) ;
     memset(f,,sizeof f);
     ; i<=n; i++) f[i][i]=;
     ; i<n; i++)
         )) f[i][i+]=; ]=;
     ; l<=n; l++) {
         ; i<=n-l+; i++) {
             ;
             ][j-];
             ][j]);
         }
     }
     dfs(,n);
     cout<<endl;
     ;
 }

[poj P1141] Brackets Sequence的更多相关文章

  1. 区间DP POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29520   Accepted: 840 ...

  2. POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29502   Accepted: 840 ...

  3. poj 1141 Brackets Sequence 区间dp,分块记录

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35049   Accepted: 101 ...

  4. POJ 1141 Brackets Sequence(区间DP, DP打印路径)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  5. POJ 1141 Brackets Sequence (区间DP)

    Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a r ...

  6. poj 1141 Brackets Sequence (区间dp)

    题目链接:http://poj.org/problem?id=1141 题解:求已知子串最短的括号完备的全序列 代码: #include<iostream> #include<cst ...

  7. poj 1141 Brackets Sequence(区间DP)

    题目:http://poj.org/problem?id=1141 转载:http://blog.csdn.net/lijiecsu/article/details/7589877 定义合法的括号序列 ...

  8. POJ 1141 Brackets Sequence(括号匹配二)

    题目链接:http://poj.org/problem?id=1141 题目大意:给你一串字符串,让你补全括号,要求补得括号最少,并输出补全后的结果. 解题思路: 开始想的是利用相邻子区间,即dp[i ...

  9. POJ 1141 Brackets Sequence(DP)

    题目链接 很早 很早之前就看过的一题,今天终于A了.状态转移,还算好想,输出路径有些麻烦,搞了一个标记数组的,感觉不大对,一直wa,看到别人有写直接输出的..二了,直接输出就过了.. #include ...

随机推荐

  1. Ethzasl MSF源码阅读(3):MSF_Core和PoseMeasurement

    1.MSF_Core的三个函数:ProcessIMU.ProcessExternallyPropagatedState和AddMeasurement MSF_Core维护了状态队列和观测值队列,这里需 ...

  2. 最新的vue没有dev-server.js文件,如何进行后台数据模拟?

    https://blog.csdn.net/qq_34645412/article/details/78833860 https://blog.csdn.net/qq_34645412/article ...

  3. 【UML】NO.47.EBook.5.UML.1.007-【UML 大战需求分析】- 部署图(Deployment Diagram)

    1.0.0 Summary Tittle:[UML]NO.47.EBook.1.UML.1.007-[UML 大战需求分析]- 部署图(Deployment Diagram) Style:Design ...

  4. JavaScript中各种对象之间的关系

    上图: 此外,补充一下图中用到的概念: 1.内置(Build-in)对象与原生(Naitve)对象的区别在于:前者总是在引擎初始化阶段就被创建好的对象,是后者的一个子集:而后者包括了一些在运行过程中动 ...

  5. Qt 拷贝内容到粘贴板 || 获取粘贴板内容

    QString source = ui->textEdit_code->toPlainText(); QClipboard *clipboard = QApplication::clipb ...

  6. 屏幕适配(UGUI)非UI

    using UnityEngine; public enum Suit_UIType { Background, Effect, } [RequireComponent(typeof(Transfor ...

  7. Flip Game (高斯消元 || dfs)

    Flip game is played on a rectangular 4x4 field with two-sided pieces placed on each of its 16 square ...

  8. Linux基础命令---lpq查看打印队列

    lpq lpq指令用来显示当前打印队列的状态.如果命令行中没有指定打印机或类,则将显示默认目标上排队的作业. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedora.ope ...

  9. mysql日期操作

    一.获取当前日期时间 1.1.获得当前日期+时间(date+time)函数:now() 1.2.获取当前日期+时间(date+time)函数:sysdate() 注:二者类拟,不同在于now()在执行 ...

  10. C++引用和const引用、常量指针、指针常量

    1.引用.常量引用 引用主要被用做函数的形式参数--通常将类对象传递给一个函数. 引用在内部存放的是一个对象的地址,它是该对象的别名.引用不占用内存,因为取地址引用的值和被引用变量的地址相同.但是ob ...