【洛谷P1073】最优贸易
题目大意:给定一个 N 个点,M 条边(存在反向边)的有向图,点有点权,求一条从 1 到 N 的路径上,任意选出两个点 p,q (p 在前,q在后),两点点权的差值最大。
根据最短路的 dp 思想,可以先对原图进行一次 dij ,求出从源点出发,到下标为 X 的点的路径中,最小的点权;再对反图进行一次 dij ,求出从汇点出发,到下标为 X 的点的路径中,最大的点权。
之后遍历每个点,两值值差的最大值即为答案。其中,遍历每一个点既保证了两点的有序性,又保证了两个点的连通性。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int maxv=1e5+10;
const int maxe=5e5+10;
inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
vector<int> G[maxv],_G[maxv];
inline void add_edge(int from,int to){
G[from].push_back(to),_G[to].push_back(from);
}
int val[maxv],n,m,d_min[maxv],d_max[maxv];
bool vis[maxv];
void read_and_parse(){
n=read(),m=read();
for(int i=1;i<=n;i++)val[i]=read();
for(int i=1,x,y,z;i<=m;i++){
x=read(),y=read(),z=read();
add_edge(x,y);
if(z==2)add_edge(y,x);
}
}
typedef pair<int,int> P;
void dij1(){
memset(vis,0,sizeof(vis));
memset(d_min,0x3f,sizeof(d_min));
priority_queue<P> q;
d_min[1]=val[1],q.push(make_pair(-val[1],1));
while(q.size()){
int u=q.top().second;q.pop();
if(vis[u])continue;
vis[u]=1;
for(int i=0;i<G[u].size();i++){
int v=G[u][i];
if(d_min[v]>min(d_min[u],val[v])){
d_min[v]=min(d_min[u],val[v]);
q.push(make_pair(-d_min[v],v));
}
}
}
}
void dij2(){
memset(vis,0,sizeof(vis));
priority_queue<P> q;
d_max[n]=val[n],q.push(make_pair(val[n],n));
while(q.size()){
int u=q.top().second;q.pop();
if(vis[u])continue;
vis[u]=1;
for(int i=0;i<_G[u].size();i++){
int v=_G[u][i];
if(d_max[v]<max(d_max[u],val[v])){
d_max[v]=max(d_max[u],val[v]);
q.push(make_pair(d_max[v],v));
}
}
}
}
void solve(){
dij1();dij2();
int ans=0;
for(int i=1;i<=n;i++)
ans=max(ans,d_max[i]-d_min[i]);
printf("%d\n",ans);
}
int main(){
read_and_parse();
solve();
return 0;
}
【洛谷P1073】最优贸易的更多相关文章
- 洛谷 P1073 最优贸易 解题报告
P1073 最优贸易 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有一部分 ...
- 洛谷P1073 最优贸易==codevs1173 最优贸易
P1073 最优贸易 题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一 ...
- 洛谷——P1073 最优贸易
P1073 最优贸易 n 个城市间以 m 条有向道路连接, 小 T 从 1 号城市出发, 将要去往 n 号城市.小 T 观察到一款商品 Z 在不同的城市的价格可能不尽相同,小 T 想要在旅行中的某一个 ...
- 洛谷 P1073 最优贸易 最短路+SPFA算法
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 P1073 最优贸易 题目描述 C国有 $ n $ 个大城市和 ...
- 洛谷P1073 最优贸易 [图论,DP]
题目传送门 最优贸易 题目描述 C 国有n 个大城市和m 条道路,每条道路连接这n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这m 条道路中有一部分为单向通行的道路,一部分为双向 ...
- 洛谷 P1073 最优贸易 & [NOIP2009提高组](反向最短路)
传送门 解题思路 很长的题,实际上在一个有向图(点有点权)中求一个从起点1到终点n的路径,使得这条路径上点权最大的点与点权最小的点的差值最大(要求必须从点权较小的点能够走到点权较大的点). ——最短路 ...
- [NOIP2009] 提高组 洛谷P1073 最优贸易
题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...
- 洛谷 P1073 最优贸易
题目描述 CC C 国有 n n n 个大城市和 m mm 条道路,每条道路连接这 nnn 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 mmm 条道路中有一部分为单向通行的道路 ...
- NOIP2009 codevs1173 洛谷P1073 最优贸易
Description: 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通 ...
- 洛谷P1073最优贸易——双向取值
题目:https://www.luogu.org/problemnew/show/P1073 由于任何城市都可以多次经过,所以可以随便走,也就不用太在意有向边和无向边,把无向边当做两条有向边处理: 根 ...
随机推荐
- C#爬虫基本知识
url编码解码 首先引用程序集System.Web.dll 如果要解码某个url的参数值的话,可以调用下面的方法: System.Web.HttpUtility.UrlDecode(string) 对 ...
- SQL Server扩充表字段长度,引发的意外KILLED/ROLLBACK
这一段时间,因为系统升级,新系统产生的数据长度,比原来的数据长度要长,所以说要扩充一下字段长度. ) --修改字段长度sql 在执行的时候,有这样一个情况. 例如Student表的Name字段长度是n ...
- 1013 C. Photo of The Sky
传送门 [http://codeforces.com/contest/1013/problem/C] 题意 输入一个n代表n颗星星,输入2n个数,其中任意两个数代表一颗行星的坐标,问你把n个星星围起来 ...
- 20135316Linux内核学习笔记第六周
20135316王剑桥<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC 1000029000 一.进程控制块PCB--task_ ...
- git工具
1.Git Bash常用命令: pwd 当前工作目录 clear 清屏 ls 列举当前目录下的文件及文件夹 cd 更改目录 mkdir 创建目录 touch 创建空文件 cp 拷 ...
- slot 插槽的作用域用法(摘自vue.js 官网)
有的时候你希望提供的组件带有一个可从子组件获取数据的可复用的插槽.例如一个简单的 <todo-list> 组件的模板可能包含了如下代码: <ul> <li v-for=& ...
- hadoop伪分布式安装之Linux环境准备
Hadoop伪分布式安装之Linux环境准备 一.软件版本 VMare Workstation Pro 14 CentOS 7 32/64位 二.实现Linux服务器联网功能 网络适配器双击选择VMn ...
- [2017BUAA软工]第一次个人项目 数独的生成与求解
零.Github链接 https://github.com/xxr5566833/sudo 一.PSP表格 PSP2.1 Personal Software Process Stages 预估耗时(分 ...
- [读书笔记]Linux命令行与shell编程读书笔记02 环境变量以及其他
1. Linux的环境变量. 全局环境变量的查看 printenv 一个结果示例 XDG_SESSION_ID=354TERM=xtermSHELL=/bin/bashSSH_CLIENT=10.24 ...
- 使用ssh config配置文件来管理ssh连接
我本人其实及其烦使用配置文件这种东西,有时候看到巨大又复杂的配置文件,甚至复杂过代码的时候,总感觉设计配置文件的人有些本末倒置. 但是ssh这个配置文件真的非常简单好用,让我稍微体验了一次配置文件使用 ...