[CTSC2017]吉夫特
Description:
给定一个序列\(a_1,a_2,a_3...a_n\)
求有多少个不上升子序列:
\(a_{b1},a_{b_2}...\) 满足 \(C_{a_{b1}}^{a_{b2}}*C_{a_{b2}}^{a_{b3}}*.....mod\ 2 >0\)
输出对\(10^9+7\)取模的结果
Hint:
$ 1 ≤ n ≤ 211985, 1 ≤ ai ≤ 233333\(。所有的\) a_i $互不相同
Solution:
由\(Lucas\)定理:
$ C_nm=C_{n/2}{m/2} \ast C_{n \text{%} 2}^{m \text{%} 2}\ \text{ % } \ 2 $
可见 \(C_{n}^m mod\ 2 \not = 0\) 的充要条件是\(n,m\)转为\(2\)进制后\(m\)中包含1的位置是\(n\)的子集
为什么?
好好思考一下\(Lucas\)的过程,不就可以看成位运算吗?
一旦有\(m>n\),则整个式子值为\(0\)
故子序列中一个数的后一位\(a_j\)必须满足 $ a_{i} \text{&} a_{j} = a_{j} $
枚举二进制位1的子集,直接\(dp\)就行
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
using namespace std;
typedef long long ll;
const int mxn=1e6+5,mod=1e9+7;
int n,ans,a[mxn],f[mxn],rk[mxn];
inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline void chkmax(int &x,int y) {if(x<y) x=y;}
inline void chkmin(int &x,int y) {if(x>y) x=y;}
int main()
{
n=read();
for(int i=1;i<=n;++i) a[i]=read(),rk[a[i]]=i,f[a[i]]=1;
for(int i=1;i<=n;++i)
for(int j=(a[i]-1)&a[i];j;j=(j-1)&a[i])
if(rk[j]>i) f[j]=(f[j]+f[a[i]])%mod;
for(int i=1;i<=n;++i) ans=(ans+f[a[i]])%mod;
printf("%d\n",(ans-n+mod)%mod);
return 0;
}
g
[CTSC2017]吉夫特的更多相关文章
- BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】
BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...
- BZOJ.4903.[CTSC2017]吉夫特(Lucas DP)
题目链接 首先\(C(n,m)\)为奇数当且仅当\(n\&m=m\). 简要证明: 因为是\(mod\ 2\),考虑Lucas定理. 在\(mod\ 2\)的情况下\(C(n,m)\)最后只会 ...
- uoj 300 [CTSC2017]吉夫特 - Lucas - 分块 - 动态规划
题目传送门 戳此处转移 题目大意 给定一个长为$n$的序列,问它有多少个长度大于等于2的子序列$b_{1}, b_{2}, \cdots, b_{k}$满足$\prod_{i = 2}^{k}C_{b ...
- bzoj千题计划247:bzoj4903: [Ctsc2017]吉夫特
http://uoj.ac/problem/300 预备知识: C(n,m)是奇数的充要条件是 n&m==m 由卢卡斯定理可以推出 选出的任意相邻两个数a,b 的组合数计算C(a,b)必须是奇 ...
- [UOJ300][CTSC2017]吉夫特
uoj bzoj luogu sol 根据\(Lucas\)定理,\(\binom nm \mod 2=\binom{n\%2}{m\%2}\times\binom{n/2}{m/2}\mod 2\) ...
- BZOJ4903: [Ctsc2017]吉夫特
传送门 可以发现,\(\binom{n}{m}\equiv 1(mod~2)\) 当且仅当 \(m~and~n~=~m\) 即 \(m\) 二进制下为 \(n\) 的子集 那么可以直接写一个 \(3^ ...
- 【bzoj4903/uoj300】[CTSC2017]吉夫特 数论+状压dp
题目描述 给出一个长度为 $n$ 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 $a$ 和 $b$ ($a$ 在 $b$ 前面),${a\choose b}\mod 2 ...
- [CTSC2017]吉夫特(Lucas定理,DP)
送70分,预处理组合数是否为偶数即可. 剩下的数据,根据Lucas定理的推论可得当且仅当n&m=n的时候,C(n,m)为奇数.这样就可以直接DP了,对于每个数,考虑它对后面的数的影响即可,直接 ...
- loj 300 [CTSC2017]吉夫特 【Lucas定理 + 子集dp】
题目链接 loj300 题解 orz litble 膜完题解后,突然有一个简单的想法: 考虑到\(2\)是质数,考虑Lucas定理: \[{n \choose m} = \prod_{i = 1} { ...
随机推荐
- K8s-Pod
一:Pod-资源对象概述 Pod是k8s系统中可以创建和管理的最小单元,是资源对象模型中由用户创建或部署的最小资源对象模型,也是在k8s上运行容器化应用的资源对象,其他的资源对象都是用来支撑或者扩展P ...
- python爬虫点触验证码的识别思路(图片版)
- 微信小程序--代码构成---JS 交互逻辑
一个服务仅仅只有界面展示是不够的,还需要和用户做交互:响应用户的点击.获取用户的位置等等.在小程序里边,我们就通过编写 JS 脚本文件来处理用户的操作. <view>{{ msg }}&l ...
- 理解DeepBox算法
理解DeepBox算法 基本情况 论文发表在ICCV2015,作者是Berkeley的博士生Weicheng Kuo: @inproceedings{KuoICCV15DeepBox, Author ...
- java发送http的get、post请求【备忘】
类 package com.dsideal.kq.Controller; import java.io.BufferedReader; import java.io.IOException; impo ...
- 【Android】ImageView ScaleType属性值
ImageView.ScaleType / android:scaleType值的意义区别: CENTER /center 按图片的原来size居中显示,当图片长/宽超过View的长/宽,则截取图片的 ...
- sendfile
Sendfile 函数在两个文件描写叙述符之间直接传递数据(全然在内核中操作,传送),从而避免了内核缓冲区数据和用户缓冲区数据之间的拷贝,操作效率非常高,被称之为零拷贝. Sendfile 函数的定义 ...
- LOJ#6433. 「PKUSC2018」最大前缀和 状压dp
原文链接https://www.cnblogs.com/zhouzhendong/p/LOJ6433.html 题解 枚举一个集合 S ,表示最大前缀和中包含的元素集为 S ,然后求出有多少个排列是这 ...
- AtCoder Regular Contest 080 (ARC080) E - Young Maids 线段树 堆
原文链接http://www.cnblogs.com/zhouzhendong/p/8934377.html 题目传送门 - ARC080 E - Young Maids 题意 给定一个长度为$n$的 ...
- C# 类的序列化和反序列化
序列化 (Serialization)将对象的状态信息转换为可以存储或传输的形式的过程.在序列化期间,对象将其当前状态写入到临时或持久性存储区.以后,可以通过从存储区中读取或反序列化对象的状态,重新创 ...