长为$A$,宽为$B$的矩阵放$K$个车的方案数$=C(A,K)\times C(B,K)\times K!$。

建立笛卡尔树,那么左右儿子独立,设$f[i][j]$表示$i$子树内放$j$个车的方案数。

合并左右儿子之后,枚举在底部矩形放几个车进行转移即可。

时间复杂度$O(n^3)$。

#include<cstdio>
const int N=505,M=1000005,P=1000000007;
int n,m,i,a[N],mx,fac[M],inv[M],g[N],f[N][N];
inline int cal(int a,int b,int k){
if(a<k||b<k)return 0;
return 1LL*fac[a]*inv[a-k]%P*inv[k]%P*fac[b]%P*inv[b-k]%P;
}
int dp(int l,int r,int h){
if(l>r)return 0;
int i,j,x=l;
for(i=l;i<=r;i++)if(a[i]<a[x])x=i;
int u=dp(l,x-1,a[x]),v=dp(x+1,r,a[x]);
for(i=0;i<=r-l;i++)g[i]=0;
for(i=0;i<=x-l;i++)if(f[u][i])for(j=0;j<=r-x;j++)g[i+j]=(1LL*f[u][i]*f[v][j]+g[i+j])%P;
for(i=0;i<=r-l+1;i++)for(f[x][i]=j=0;j<=r-l&&j<=i;j++)f[x][i]=(1LL*g[j]*cal(r-l+1-j,a[x]-h,i-j)+f[x][i])%P;
return x;
}
int main(){
scanf("%d%d",&n,&m);
for(mx=n,i=1;i<=n;i++)scanf("%d",&a[i]),mx=a[i]>mx?a[i]:mx;
for(fac[0]=i=1;i<=mx;i++)fac[i]=1LL*fac[i-1]*i%P;
for(inv[0]=inv[1]=1,i=2;i<=mx;i++)inv[i]=1LL*P/i*(P-inv[P%i])%P;
for(i=2;i<=mx;i++)inv[i]=1LL*inv[i-1]*inv[i]%P;
return printf("%d",f[dp(f[0][0]=1,n,0)][m]),0;
}

  

BZOJ2616 : SPOJ PERIODNI的更多相关文章

  1. [BZOJ2616]SPOJ PERIODNI 树形dp+组合数+逆元

    2616: SPOJ PERIODNI Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 128  Solved: 48[Submit][Status][ ...

  2. BZOJ2616 SPOJ PERIODNI(笛卡尔树+树形dp)

    考虑建一棵小根堆笛卡尔树,即每次在当前区间中找到最小值,以最小值为界分割区间,由当前最小值所在位置向两边区间最小值所在位置连边,递归建树.那么该笛卡尔树中的一棵子树对应序列的一个连续区间,且根的权值是 ...

  3. bzoj2616: SPOJ PERIODNI——笛卡尔树+DP

    不连续的处理很麻烦 导致序列DP又找不到优秀的子问题 自底向上考虑? 建立小根堆笛卡尔树 每个点的意义是:高度是(自己-father)的横着的极大矩形 子问题具有递归的优秀性质 f[i][j]i为根子 ...

  4. BZOJ2616 SPOJ PERIODNI(笛卡尔树 + DP)

    题意 N,K≤500,h[i]≤106N,K\le 500,h[i]\le10^6N,K≤500,h[i]≤106 题解 建立出小根堆性质的笛卡尔树,于是每个节点可以代表一个矩形,其宽度为子树大小,高 ...

  5. 【BZOJ2616】SPOJ PERIODNI 笛卡尔树+树形DP

    [BZOJ2616]SPOJ PERIODNI Description Input 第1行包括两个正整数N,K,表示了棋盘的列数和放的车数. 第2行包含N个正整数,表示了棋盘每列的高度. Output ...

  6. BZOJ.2616.SPOJ PERIODNI(笛卡尔树 树形DP)

    BZOJ SPOJ 直观的想法是构建笛卡尔树(每次取最小值位置划分到两边),在树上DP,这样两个儿子的子树是互不影响的. 令\(f[i][j]\)表示第\(i\)个节点,放了\(j\)个车的方案数. ...

  7. spoj periodni

    题解: dp 方程弄出来就好做了 代码: #include<bits/stdc++.h> ,M=; typedef int arr[N]; typedef long long ll; in ...

  8. bzoj 2616 SPOJ PERIODNI——笛卡尔树+树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2616 把相同高度的连续一段合成一个位置(可能不需要?),用前缀和维护宽度. 然后每次找区间里 ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. sublime快捷键的使用

    Sublime text 3是码农最喜欢的代码编辑器,每天和代码打交道,必先利其器,掌握基本的代码编辑器的快捷键,能让你打码更有效率.刚开始可能有些生疏,只要花一两个星期坚持使用并熟悉这些常用的快捷键 ...

  2. Python数据分析几个比较常用的方法

    1,表头或是excel的索引如果是中文的话,输出会出错 ​​解决方法:python的版本问题!换成python3就自动解决了!当然也有其他的方法,这里就不再深究 2,如果有很多列,如何输出指定的列? ...

  3. Django中间件 及 form 实现用户登陆

    Django中间件 及 form 实现用户登陆 Form 验证 密码调用md5 加密存储 form.add_error("字段名", "错误信息") 自定义错误 ...

  4. MyBatis - 6.Spring整合MyBatis

    1.查看不同MyBatis版本整合Spring时使用的适配包: http://www.mybatis.org/spring/ 2.下载整合适配包 https://github.com/mybatis/ ...

  5. nginx限制单个IP的最大连接数量限制下载速度

    今天seafile服务因为测试在下载文件的时候,带宽占用过大,导致seafile客户端无法登陆的问题. 我们公司的seafile是通过nginx代理的8000端口,因此我这边通过修改nginx配置来解 ...

  6. 51Nod1773 A国的贸易 多项式 FWT

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1773.html 题目传送门 - 51Nod1773 题意 给定一个长度为 $2^n$ 的序列,第 $ ...

  7. Linux基础学习(一)__后台运行Python文件

    Linux 后台运行Python脚本 1.安装Python:(python 3.5.4) 2.安装Python依赖包: 2.1 处理Python更新后yum无法正常使用的问题 (错误信息: -bash ...

  8. P1441 砝码称重 DFS回溯+DP

    题目描述 现有n个砝码,重量分别为a1,a2,a3,……,an,在去掉m个砝码后,问最多能称量出多少不同的重量(不包括0). 请注意,砝码只能放在其中一边. 输入输出格式 输入格式: 输入文件weig ...

  9. 20165235 2017-2018-2《Java程序设计》课程总结

    20165235 2017-2018-2<Java程序设计>课程总结 每周作业链接汇总 预备作业一 预备作业二 预备作业三 第一周学习总结 第二周学习总结 第三周学习总结 第四周学习总结 ...

  10. Java中菜单的实现以及画实线与画虚线之间的自由转化

    1.Java画线 1 import java.awt.Color; import java.awt.Container; import java.awt.Graphics; import java.a ...