BZOJ4448[Scoi2015]情报传递——主席树+LCA
题目描述
输入
输出
样例输入
0 1 1 2 2 3 3
6
1 4 7 0
2 1
2 4
2 7
1 4 7 1
1 4 7 3
样例输出
5 2
5 1
提示
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
struct node
{
int opt;
int x,y;
int z;
}a[200010];
int n,m;
int tot;
int cnt;
int rot;
int v[200010];
int d[200010];
int to[200010];
int ls[6000010];
int rs[6000010];
int sum[6000010];
int root[1000010];
int head[200010];
int next[200010];
int f[200010][20];
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void dfs(int x,int fa)
{
d[x]=d[fa]+1;
for(int i=1;i<=19;i++)
{
f[x][i]=f[f[x][i-1]][i-1];
}
for(int i=head[x];i;i=next[i])
{
dfs(to[i],x);
}
}
int lca(int x,int y)
{
if(d[x]<d[y])
{
swap(x,y);
}
int dep=d[x]-d[y];
for(int i=0;i<=19;i++)
{
if((dep&(1<<i))!=0)
{
x=f[x][i];
}
}
if(x==y)
{
return x;
}
for(int i=19;i>=0;i--)
{
if(f[x][i]!=f[y][i])
{
x=f[x][i];
y=f[y][i];
}
}
return f[x][0];
}
int updata(int pre,int l,int r,int k)
{
int rt=++cnt;
if(l==r)
{
sum[rt]++;
return rt;
}
ls[rt]=ls[pre];
rs[rt]=rs[pre];
sum[rt]=sum[pre]+1;
int mid=(l+r)>>1;
if(k<=mid)
{
ls[rt]=updata(ls[pre],l,mid,k);
}
else
{
rs[rt]=updata(rs[pre],mid+1,r,k);
}
return rt;
}
void build(int x,int fa)
{
root[x]=root[fa];
if(v[x]!=0)
{
root[x]=updata(root[fa],1,m,v[x]);
}
for(int i=head[x];i;i=next[i])
{
build(to[i],x);
}
}
int query(int x,int y,int fa,int anc,int l,int r,int k)
{
if(l==r)
{
return sum[x]+sum[y]-sum[fa]-sum[anc];
}
int res=sum[ls[x]]+sum[ls[y]]-sum[ls[fa]]-sum[ls[anc]];
int mid=(l+r)>>1;
if(k<=mid)
{
return query(ls[x],ls[y],ls[fa],ls[anc],l,mid,k);
}
else
{
return res+query(rs[x],rs[y],rs[fa],rs[anc],mid+1,r,k);
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&f[i][0]);
add(f[i][0],i);
}
for(int i=1;i<=n;i++)
{
if(f[i][0]==0)
{
rot=i;
dfs(i,0);
break;
}
}
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
scanf("%d",&a[i].opt);
if(a[i].opt==1)
{
scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);
}
else
{
scanf("%d",&a[i].z);
v[a[i].z]=i;
}
}
build(rot,0);
for(int i=1;i<=m;i++)
{
if(a[i].opt==1)
{
int anc=lca(a[i].x,a[i].y);
printf("%d ",d[a[i].x]+d[a[i].y]-d[anc]-d[f[anc][0]]);
if(i-a[i].z-1<=0)
{
printf("0\n");
continue;
}
printf("%d\n",query(root[a[i].x],root[a[i].y],root[anc],root[f[anc][0]],1,m,i-a[i].z-1));
}
}
}
BZOJ4448[Scoi2015]情报传递——主席树+LCA的更多相关文章
- 【BZOJ4448】[Scoi2015]情报传递 主席树+LCA
[BZOJ4448][Scoi2015]情报传递 Description 奈特公司是一个巨大的情报公司,它有着庞大的情报网络.情报网络中共有n名情报员.每名情报员能有若干名(可能没有)下线,除1名大头 ...
- bzoj4448 [Scoi2015]情报传递 主席树+树上差分
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4448 题解 练习一下主席树的基础练习题找回感觉. 对于每一次询问,第一问显然随便做. 第二问的 ...
- 【bzoj4448】[Scoi2015]情报传递 主席树
题目描述 奈特公司是一个巨大的情报公司,它有着庞大的情报网络.情报网络中共有n名情报员.每名情报员口J-能有若T名(可能没有)下线,除1名大头日外其余n-1名情报员有且仅有1名上线.奈特公司纪律森严, ...
- bzoj 4448 [Scoi2015]情报传递 主席树
比较套路的题目. 可以发现难点在于某个点的权值动态修改 且我们要维护树上一条路径上的点权>x的个数. 每个点都在动态修改 这意味着我们的只能暴力的去查每个点. 考虑将所有可以动态修改的点变成静态 ...
- 4448: [Scoi2015]情报传递|主席树|离线操作
能够把全部的操作离线,然后树链剖分将全部人搜集情报的时间增加到主席树中,查询的时候能够直接查询搜集情报时间≤i−C[i]−1的人的个数 时间复杂度n∗log22n,空间复杂度n∗log2n #incl ...
- Count on a tree SPOJ 10628 主席树+LCA(树链剖分实现)(两种存图方式)
Count on a tree SPOJ 10628 主席树+LCA(树链剖分实现)(两种存图方式) 题外话,这是我第40篇随笔,纪念一下.<( ̄︶ ̄)↗[GO!] 题意 是说有棵树,每个节点上 ...
- BZOJ4448 SCOI2015情报传递(离线+树链剖分+树状数组)
即滋磁单点修改,询问路径上小于某数的值有多少个.暴力树剖套个主席树(或者直接树上主席树,似乎就1个log了?感觉不一定比两个log快)即可,然而不太优美. 开始觉得可以cdq,然而就变成log^3了. ...
- 洛谷P4216 [SCOI2015]情报传递(树剖+主席树)
传送门 我们可以进行离线处理,把每一个情报员的权值设为它开始收集情报的时间 那么设询问的时间为$t$,就是问路径上有多少个情报员的权值小于等于$t-c-1$ 这个只要用主席树上树就可以解决了,顺便用树 ...
- bzoj4448 SCOI2015 情报传递 message
传送门bzoj4448 题解 离线之后构建树上主席树,每个点的线段树维护到根路径的信息,不用链剖(我的链剖只是拿来求\(\mathrm{lca}\)的),时空复杂度\(O(n\log{n})\). c ...
随机推荐
- 【Codeforces 1137C】Museums Tour
Codeforces 1137 C 题意:给一个有向图,一周有\(d\)天,每一个点在每一周的某些时刻会开放,现在可以在这个图上从\(1\)号点开始随意地走,问最多能走到多少个开放的点.一个点如果重复 ...
- Android学习之adb异常处理
错误信息: eclipse运行Android程序时,报以下错误: The connection to adb is down, and a severe error has occured. You ...
- JAVA体系的线程的实现,线程的调度,状态的转换
java体系中线程的实现 1.使用内核线程实现 内核线程就是直接由操作系统内核支持的线程,这种线程由内核来完成线程切换,内核通过操作调度器对线程进行调度,并负责将线程的任务映射到各个处理器上,每个内核 ...
- Luogu4199 万径人踪灭 FFT、Manacher
传送门 先不考虑”不是连续的一段“这一个约束条件.可以知道:第$i$位与第$j$位相同,可以对第$\frac{i+j}{2}$位置上产生$1$的贡献(如果$i+j$为奇数表明它会对一条缝产生$1$的贡 ...
- vue2.0中使用less
第一部分:Less语言 与上一篇<vue2.0中使用sass>介绍的Sass语言一样,Less语言也是一种CSS的扩展语言,增加了变量.混合(minin).函数等功能,让CSS更易维护.方 ...
- 通过Jekins执行bat脚本始终无法完成
问题描述 最近在研究Devops工作流,中间有一个环节是自动发布版本的,我们使用PipeLine调用Jekins任务,最终执行bat脚本,但在执行Jekins任务的时候,任务总是完成不了,导致DBA在 ...
- C# LINQ 详解 From Where Select Group Into OrderBy Let Join
目录 1. 概述 2. from子句 3. where子句 4. select子句 5. group子句 6. into子句 7. 排序子句 8. let子句 9. join子句 10. 小结 1. ...
- linux svn代码回滚命令
取消对代码的修改分为两种情况: 第一种情况:改动没有被提交(commit). 这种情况下,使用svn revert就能取消之前的修改. svn revert用法如下: # svn revert [-R ...
- CF1153F Serval and Bonus Problem FFT
CF1153F Serval and Bonus Problem 官方的解法是\(O(n ^ 2)\)的,这里给出一个\(O(n \log n)\)的做法. 首先对于长度为\(l\)的线段,显然它的答 ...
- MariaDB 安装与启动 过程记录
1. 安装之前的准备工作 rpm -qa |grep mysql rpm -qa |grep mariadb 按照查出来的软件包使用 yum remove 全部卸载,当然也可以 yum remov ...