Macro-Micro Adversarial Network for Human Parsing

ECCV-2018   2018-10-27 15:15:07

Paper: https://arxiv.org/pdf/1807.08260.pdf

Codehttps://github.com/RoyalVane/MMAN

Motiviation-1: Why use the Adversarial Loss ? 

Based on CNN architecture, the pixel-wise classification loss is usually used [19,34,10] which punishes the classification error for each pixel. Despite providing an effective baseline, the pixel-wise classification loss which is designed for per-pixel category prediction, has two drawbacks.

First, the pixel-wise classification loss may lead to local inconsistency, such as holes and blur. The reason is that it merely penalizes the false prediction on every pixel without explicitly considering the correlation among the adjacent pixels.

Second, pixel-wise classification loss may lead to semantic inconsistency in the overall segmentation map, such as unreasonable human poses and incorrect spatial relationship of body parts. Compared to the local inconsistency, the semantic inconsistency is generated from deeper layers. When only looking at a local region, the learned model does not have an overall sense of the topology of body parts.

In the attempt to address the inconsistency problems, the conditional random fields (CRFs) [17] can be employed as a post processing method. However, CRFs usually handle inconsistency in very limited scope (locally) due to the pairwise potentials, and may even generate worse label maps given poor initial segmentation result. As an alternative to CRFs, a recent work proposes the use of adversarial network [24]. Since the adversarial loss assesses whether a label map is real or fake by joint configuration of many label variables, it can enforce higher-level consistency, which cannot be achieved with pairwise terms or the per-pixel classification loss. Now, an increasing number of works adopt the routine of combining the cross entropy loss with an adversarial loss to produce label maps closer to the ground truth [5,27,12].

Motiviation-2: Why use the Two Discriminator ? 

Nevertheless, the previous adversarial network also has its limitations.

First, the single discriminator back propagates only one adversarial loss to the generator. However, the local inconsistency is generated from top layers and the semantic inconsistency is generated from deep layers. The two targeted layers can not be discretely trained with only one adversarial loss.

Second, a single discriminator has to look at overall high-resolution image (or a large part of it) in order to supervise the global consistency. As mentioned by numbers of literatures [7,14], it is very difficult for a generator to fool the discriminator on a high-resolution image. As a result, the single discriminator back propagates a maximum adversarial loss invariably, which makes the training unbalanced. We call it poor convergence problem, as shown in Fig. 2.

Our Proposed Approach: 

In this paper, the basic objective is to improve the local and semantic consistency of label maps in human parsing. We adopt the idea of adversarial training and at the same time aim to addresses its limitations, i.e., the inferior ability in improving parsing consistency with a single adversarial loss and the poor convergence problem. Specifically, we introduce the Macro-Micro Adversarial Nets (MMAN). MMAN consists of a dual-output generator (G) and two discriminators (D), named Macro D and Micro D. The three modules constitute two adversarial networks (Macro AN, Micro AN), addressing the semantic consistency and the local consistency, respectively.

Difference with Previous Works: 

A brief pipeline of the proposed framework is shown in Fig. 3. It is in two critical aspects that MMAN departs from previous works.

First, our method explicitly copes with the local inconsistency and semantic inconsistency problem using two task-specific adversarial networks individually.

Second, our method does not use large-sized FOVs on high-resolution image, so we can avoid the poor convergence problem. More detailed description of the merits of the proposed network is provided in Section 3.5.

Our Contributions: 

We propose a new framework called Macro-Micro Adversarial Network (MMAN) for human parsing. The Macro AN and Micro AN focus on semantic and local inconsistency respectively, and work in complementary way to improve the parsing quality.

The two discriminators in our framework achieve local and global supervision on the label maps with small field of views (FOVs), which avoids the poor convergence problem caused by high-resolution images.

– The proposed adversarial net achieves very competitive mIoU on the LIP and PASCAL-Person-Part datasets, and can be well generalized on a relatively small dataset PPSS.

==

Macro-Micro Adversarial Network for Human Parsing的更多相关文章

  1. 《Macro-Micro Adversarial Network for Human Parsing》论文阅读笔记

    <Macro-Micro Adversarial Network for Human Parsing> 摘要:在人体语义分割中,像素级别的分类损失在其低级局部不一致性和高级语义不一致性方面 ...

  2. 论文阅读之:Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

    Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network  2016.10.23 摘要: ...

  3. 论文笔记: Mutual Learning to Adapt for Joint Human Parsing and Pose Estimation

    Mutual Learning to Adapt for Joint Human Parsing and Pose Estimation 2018-11-03 09:58:58 Paper: http ...

  4. Face Aging with Conditional Generative Adversarial Network 论文笔记

    Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28  Motivation: 本文是要根据最新的条件产 ...

  5. 生成对抗网络(Generative Adversarial Network)阅读笔记

    笔记持续更新中,请大家耐心等待 首先需要大概了解什么是生成对抗网络,参考维基百科给出的定义(https://zh.wikipedia.org/wiki/生成对抗网络): 生成对抗网络(英语:Gener ...

  6. GAN Generative Adversarial Network 生成式对抗网络-相关内容

    参考: https://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for=pc Generative Adversari ...

  7. ASRWGAN: Wasserstein Generative Adversarial Network for Audio Super Resolution

    ASEGAN:WGAN音频超分辨率 这篇文章并不具有权威性,因为没有发表,说不定是外国的某个大学的毕业设计,或者课程结束后的作业.或者实验报告. CS230: Deep Learning, Sprin ...

  8. 论文阅读:Single Image Dehazing via Conditional Generative Adversarial Network

    Single Image Dehazing via Conditional Generative Adversarial Network Runde Li∗ Jinshan Pan∗ Zechao L ...

  9. Speech Super Resolution Generative Adversarial Network

    博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/10874993.html 论文作者:Sefik Emre Eskimez , Kazuhito K ...

随机推荐

  1. 3 Oracle 32位客户端安装及arcgis连接

    关于Oracle服务器端安装及配置的过程详见第2篇文章,链接如下:http://www.cnblogs.com/gistrd/p/8494292.html,本篇介绍客户端安装配置及连接arcgis过程 ...

  2. 微信小程序开发笔记03

    今天基本实现了微信小程序主要功能,页面还没有进行优化,有些功能还需完善. 页面之间的信息转化部分还未实现.

  3. JavaScript基础知识(字符串的方法)

    字符串的方法 1.字符串: 在js中被单引号或双引号包起来的内容都是字符串: var t = "true"; console.log(typeof t);// "stri ...

  4. Tunnels HDU - 4856

    BFS寻找每个点到其他点的最小距离 再状压DP,DP[i][j] i二进制表示每个点的到达状态,j为当前所在点 #include<iostream> #include<cstring ...

  5. torch.utils.data.DataLoader使用方法

    数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集.在训练模型时使用到此函数,用来把训练数据分成多个小组,此函数每次抛出一组数据.直至把所有的数据都抛出.就是做一个数据的初始化. 生成迭 ...

  6. arcpy加载mxd文件时,无效的MXD路径,提示assert (os.path.isfile(mxd) or (mxd.lower() == "current")), gp.getIDMessage(89004, "Invalid MXD filename")

    无效的MXD路径,将路径前加‘u’,改为这种: mxdPath = u"C:\\1331\\DB\\Original Files\\dd.mxd" 参考: https://gis. ...

  7. 《Mysql 数据类型》

    一:整型 - 常用类型 类型 占用(字节) 范围 无符号范围 无符号范围 TINYINT 2的8次方 - — — SMALLINT 2的15次方 - — 6553 5 INT 2的31次方 - — 4 ...

  8. (Detected problems with API compatibility(visit g.co/dev/appcompat for more info)

    在applicaiton里面加载这么一段代码: private void closeAndroidPDialog(){ try { Class aClass = Class.forName(" ...

  9. javaweb(1)之tomcat使用

    安装 1.点击下载. 2.解压到一个目录. 3.进入解压后的 bin 目录,双击该文件夹下的 startup.bat 即可运行. 4.若运行成功,会有一个窗口悬停如下: 访问地址: localhost ...

  10. CSS中list-style详解

    取消默认的圆点和序号可以这样写list-style:none;, list的属性如下: list-style-type:square;//正方形 list-style-position:inside; ...