1. 正则表达式基础

1.1. 简单介绍

正则表达式并不是Python的一部分。正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大。得益于这一点,在提供了正则表达式的语言里,正则表达式的语法都是一样的,区别只在于不同的编程语言实现支持的语法数量不同;但不用担心,不被支持的语法通常是不常用的部分。如果已经在其他语言里使用过正则表达式,只需要简单看一看就可以上手了。

  在这里还是要推荐下我自己建的Python开发学习群:725479218,群里都是学Python开发的,如果你正在学习Python ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有Python软件开发相关的),包括我自己整理的一份2018最新的Python进阶资料和高级开发教程,欢迎进阶中和进想深入Python的小伙伴

下图展示了使用正则表达式进行匹配的流程: 

正则表达式的大致匹配过程是:依次拿出表达式和文本中的字符比较,如果每一个字符都能匹配,则匹配成功;一旦有匹配不成功的字符则匹配失败。如果表达式中有量词或边界,这个过程会稍微有一些不同,但也是很好理解的,看下图中的示例以及自己多使用几次就能明白。

下图列出了Python支持的正则表达式元字符和语法:

1.2. 数量词的贪婪模式与非贪婪模式

正则表达式通常用于在文本中查找匹配的字符串。Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字符;非贪婪的则相反,总是尝试匹配尽可能少的字符。例如:正则表达式"ab"如果用于查找"abbbc",将找到"abbb"。而如果使用非贪婪的数量词"ab?",将找到"a"。

1.3. 反斜杠的困扰

与大多数编程语言相同,正则表达式里使用""作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符"",那么使用编程语言表示的正则表达式里将需要4个反斜杠"\\":前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r"\"表示。同样,匹配一个数字的"\d"可以写成r"\d"。有了原生字符串,你再也不用担心是不是漏写了反斜杠,写出来的表达式也更直观。

1.4. 匹配模式

正则表达式提供了一些可用的匹配模式,比如忽略大小写、多行匹配等,这部分内容将在Pattern类的工厂方法re.compile(pattern[, flags])中一起介绍。

2. re模块

2.1. 开始使用re

Python通过re模块提供对正则表达式的支持。使用re的一般步骤是先将正则表达式的字符串形式编译为Pattern实例,然后使用Pattern实例处理文本并获得匹配结果(一个Match实例),最后使用Match实例获得信息,进行其他的操作。

# encoding: UTF-8
import re # 将正则表达式编译成Pattern对象
pattern = re.compile(r'hello') # 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回None
match = pattern.match('hello world!') if match:
# 使用Match获得分组信息
print match.group() ### 输出 ###
# hello
# encoding: UTF-8
import re # 将正则表达式编译成Pattern对象
pattern = re.compile(r'hello') # 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回None
match = pattern.match('hello world!') if match: # 使用Match获得分组信息
print match.group() ### 输出 ### # hello
a = re.compile(r"""\d +  # the integral part
\. # the decimal point
\d * # some fractional digits""", re.X)
b = re.compile(r"\d+\.\d*")

re.compile(strPattern[, flag]):

这个方法是Pattern类的工厂方法,用于将字符串形式的正则表达式编译为Pattern对象。 第二个参数flag是匹配模式,取值可以使用按位或运算符'|'表示同时生效,比如re.I | re.M。另外,你也可以在regex字符串中指定模式,比如re.compile('pattern', re.I | re.M)与re.compile('(?im)pattern')是等价的。 

可选值有:

  • re.I(re.IGNORECASE): 忽略大小写(括号内是完整写法,下同)
  • M(MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图)
  • S(DOTALL): 点任意匹配模式,改变'.'的行为
  • L(LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
  • U(UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
  • X(VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。以下两个正则表达式是等价的:

re提供了众多模块方法用于完成正则表达式的功能。这些方法可以使用Pattern实例的相应方法替代,唯一的好处是少写一行re.compile()代码,但同时也无法复用编译后的Pattern对象。这些方法将在Pattern类的实例方法部分一起介绍。如上面这个例子可以简写为:

re模块还提供了一个方法escape(string),用于将string中的正则表达式元字符如*/+/?等之前加上转义符再返回,在需要大量匹配元字符时有那么一点用。

2.2. Match

Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。

属性:

  1. string: 匹配时使用的文本。
  2. re: 匹配时使用的Pattern对象。
  3. pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
  4. endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
  5. lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
  6. lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。

方法:

  1. **group([group1, …]): **

    获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
  2. groups([default]): 

    以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
  3. groupdict([default]): 返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。
  4. start([group]): 

    返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
  5. end([group]): 返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。
  6. span([group]): 返回(start(group), end(group))。
  7. expand(template): 

    将匹配到的分组代入template中然后返回。template中可以使用\id或\g、\g引用分组,但不能使用编号0。\id与\g是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符'0',只能使用\g<1>0。
import re
m = re.match(r'(\w+) (\w+)(?P<sign>.*)', 'hello world!') print "m.string:", m.string
print "m.re:", m.re
print "m.pos:", m.pos
print "m.endpos:", m.endpos
print "m.lastindex:", m.lastindex
print "m.lastgroup:", m.lastgroup print "m.group(1,2):", m.group(1, 2)
print "m.groups():", m.groups()
print "m.groupdict():", m.groupdict()
print "m.start(2):", m.start(2)
print "m.end(2):", m.end(2)
print "m.span(2):", m.span(2)
print r"m.expand(r'\2 \1\3'):", m.expand(r'\2 \1\3') ### output ###
# m.string: hello world!
# m.re: <_sre.SRE_Pattern object at 0x016E1A38>
# m.pos: 0
# m.endpos: 12
# m.lastindex: 3
# m.lastgroup: sign
# m.group(1,2): ('hello', 'world')
# m.groups(): ('hello', 'world', '!')
# m.groupdict(): {'sign': '!'}
# m.start(2): 6
# m.end(2): 11
# m.span(2): (6, 11)
# m.expand(r'\2 \1\3'): world hello!

2.3. Pattern

Pattern对象是一个编译好的正则表达式,通过Pattern提供的一系列方法可以对文本进行匹配查找。

Pattern不能直接实例化,必须使用re.compile()进行构造。

Pattern提供了几个可读属性用于获取表达式的相关信息:

  1. pattern: 编译时用的表达式字符串。
  2. flags: 编译时用的匹配模式。数字形式。
  3. groups: 表达式中分组的数量。
  4. groupindex: 以表达式中有别名的组的别名为键、以该组对应的编号为值的字典,没有别名的组不包含在内。
import re
p = re.compile(r'(\w+) (\w+)(?P<sign>.*)', re.DOTALL) print "p.pattern:", p.pattern
print "p.flags:", p.flags
print "p.groups:", p.groups
print "p.groupindex:", p.groupindex ### output ###
# p.pattern: (\w+) (\w+)(?P<sign>.*)
# p.flags: 16
# p.groups: 3
# p.groupindex: {'sign': 3}

  实例方法[ | re模块方法]:

  1. match(string[, pos[, endpos]]) | re.match(pattern, string[, flags]): 这个方法将从string的pos下标处起尝试匹配pattern;如果pattern结束时仍可匹配,则返回一个Match对象;如果匹配过程中pattern无法匹配,或者匹配未结束就已到达endpos,则返回None。 

    pos和endpos的默认值分别为0和len(string);re.match()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。 

    注意:这个方法并不是完全匹配。当pattern结束时若string还有剩余字符,仍然视为成功。想要完全匹配,可以在表达式末尾加上边界匹配符'$'。 

    示例参见2.1小节。
  2. search(string[, pos[, endpos]]) | re.search(pattern, string[, flags]): 这个方法用于查找字符串中可以匹配成功的子串。从string的pos下标处起尝试匹配pattern,如果pattern结束时仍可匹配,则返回一个Match对象;若无法匹配,则将pos加1后重新尝试匹配;直到pos=endpos时仍无法匹配则返回None。 

    pos和endpos的默认值分别为0和len(string));re.search()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。
# encoding: UTF-8
import re # 将正则表达式编译成Pattern对象
pattern = re.compile(r'world') # 使用search()查找匹配的子串,不存在能匹配的子串时将返回None
# 这个例子中使用match()无法成功匹配
match = pattern.search('hello world!') if match:
# 使用Match获得分组信息
print match.group() ### 输出 ###
# world

3.   split(string[, maxsplit]) | re.split(pattern, string[, maxsplit]):       按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。

import re

p = re.compile(r'\d+')
print p.split('one1two2three3four4') ### output ###
# ['one', 'two', 'three', 'four', '']

4.   findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags]):       搜索string,以列表形式返回全部能匹配的子串。

import re

p = re.compile(r'\d+')
print p.findall('one1two2three3four4') ### output ###
# ['1', '2', '3', '4']

5.  finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags]):       搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。

import re

p = re.compile(r'\d+')
for m in p.finditer('one1two2three3four4'):
print m.group(), ### output ###
# 1 2 3 4

6.   sub(repl, string[, count]) | re.sub(pattern, repl, string[, count]):       使用repl替换string中每一个匹配的子串后返回替换后的字符串。 

      当repl是一个字符串时,可以使用\id或\g、\g引用分组,但不能使用编号0。 

      当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。 

      count用于指定最多替换次数,不指定时全部替换。

import re

p = re.compile(r'(\w+) (\w+)')
s = 'i say, hello world!' print p.sub(r'\2 \1', s) def func(m):
return m.group(1).title() + ' ' + m.group(2).title() print p.sub(func, s) ### output ###
# say i, world hello!
# I Say, Hello World!

    7.  subn(repl, string[, count]) |re.sub(pattern, repl, string[, count]):       返回 (sub(repl, string[, count]), 替换次数)。

以上就是Python对于正则表达式的支持。熟练掌握正则表达式是每一个程序员必须具备的技能,这年头没有不与字符串打交道的程序了。笔者也处于初级阶段,与君共勉,_

另外,图中的特殊构造部分没有举出例子,用到这些的正则表达式是具有一定难度的。有兴趣可以思考一下,如何匹配不是以abc开头的单词,_

【Python】Python正则表达式使用指导的更多相关文章

  1. 【转】【Python】Python正则表达式使用指导

    1. 正则表达式基础 1.1. 简单介绍 正则表达式并不是Python的一部分.正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十 ...

  2. Python使用正则表达式(Regular Expression)超详细

    一.导入re库 python使用正则表达式要导入re库. import re在re库中.正则表达式通常被用来检索查找.替换那些符合某个模式(规则)的文本.ps:另外很多人在学习Python的过程中,往 ...

  3. [python] 常用正则表达式爬取网页信息及分析HTML标签总结【转】

    [python] 常用正则表达式爬取网页信息及分析HTML标签总结 转http://blog.csdn.net/Eastmount/article/details/51082253 标签: pytho ...

  4. Python 进阶 - 正则表达式

    1. 正则表达式基础 1.1. 简单介绍 正则表达式并不是Python的一部分.正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十 ...

  5. python study - 正则表达式

    第 7 章 正则表达式 7.1. 概览 7.2. 个案研究:街道地址 7.3. 个案研究:罗马字母 7.3.1. 校验千位数 7.3.2. 校验百位数 7.4. 使用 {n,m} 语法 7.4.1. ...

  6. python使用正则表达式文本替换

    2D客户端编程从某种意义上来讲就是素材组织,所以,图片素材组织经常需要批量处理,python一定是最佳选择,不管是win/linux/mac都有一个简单的运行环境 举两个应用场景: 如果不是在某个文件 ...

  7. python的正则表达式 re

    python的正则表达式 re 本模块提供了和Perl里的正则表达式类似的功能,不关是正则表达式本身还是被搜索的字符串,都可以是Unicode字符,这点不用担心,python会处理地和Ascii字符一 ...

  8. Python之正则表达式(re模块)

    本节内容 re模块介绍 使用re模块的步骤 re模块简单应用示例 关于匹配对象的说明 说说正则表达式字符串前的r前缀 re模块综合应用实例 正则表达式(Regluar Expressions)又称规则 ...

  9. python之 正则表达式

    简介 Python 自1.5版本起增加了re 模块,它提供 Perl 风格的正则表达式模式.Python 1.5之前版本则是通过 regex 模块提供 Emacs 风格的模式.Emacs 风格模式可读 ...

随机推荐

  1. (后端)注意hibernate中对象的set方法修改数据库

    2017-10-16 公司里面其他人发现了一个问题,五粮液金品库存出现了问题,删除了库存也没还回来,一瓶一千多.而且在我的功能块,在我看出货详情的时候,诡异的事情发生了,第一眼看上去没问题呀,刷新了一 ...

  2. 怎么查找Jenkins的个人api token

    程序中可变部分解释:其中server.build_job方法传入的参数channel为分渠道构建参数,也即jenkins job的参数,这个参数随不同的日常job不同是不同的,实际编写脚本的过程中这个 ...

  3. [20171107]dbms_shared_pool.pin.txt

    [20171107]dbms_shared_pool.pin.txt --//昨天与别人聊天提到,如果dbms_shared_pool.pin对象,可以改变对应的chunk的类型.我自己也不确定,做一 ...

  4. GPU与CPU的区别

    作者:虫子君 链接:https://www.zhihu.com/question/19903344/answer/96081382 来源:知乎 著作权归作者所有.商业转载请联系作者获得授权,非商业转载 ...

  5. 第四章 Hyper-V 2012 R2 网络配置

      尼玛的我不高兴写了,所以下面的文档我直接把原来的pdf给转换出来,加了点自己的注解,我写的话会写自己觉得终于的章节. 在搭建虚拟化平台时,网络的虚拟化是一个非常重要的环节,如何保障网络的持续可用并 ...

  6. 用Python实现数据结构之映射

    映射与字典 字典dict是Python中重要的数据结构,在字典中,每一个键都对应一个值,其中键与值的关系就叫做映射,也可以说是每一个键都映射到一个值上. 映射(map)是更具一般性的数据类型,具体到P ...

  7. check

    private int AddNewstoDB(NewsModels newsModels, string dateTimeStr, string jsonStr, string cid, strin ...

  8. is_valid校验机制

    先来归纳一下整个流程 (1)首先is_valid()起手,看seld.errors中是否值,只要有值就是flase(2)接着分析errors.里面判断_errors是都为空,如果为空返回self.fu ...

  9. Redhat 下 XAMPP 安装和部署 DVWA 教程

    XAMPP(Apache+MySQL+PHP+PERL)是一个功能强大的建站集成软件包.这个软件包原来的名字是 LAMPP,但是为了避免误解,最新的几个版本就改名为 XAMPP 了.它可以在Windo ...

  10. 深入理解Java的堆内存和线程内存

    我们都知道Java对象都是在堆中创建的(开启逃逸分析的情况除外),比如一个线程中有一段这样的代码: public class A{ public int xxx; } 通过A a = new A(); ...