一道超级简单的状压DP题所以说状压是个好东西

看数据范围,同时我们发现一个格子要么放国王or不放,因此可以用二进制数来表示某一行的国王放置信息

于是我们马上想到用\(f_{i,j}\)表示放了前\(i\)行,其中第\(i\)行的国王摆放情况为\(j\)时的方案数

那么转移就很显然了,每次我们枚举本行的国王信息以及上一行的放置位置,然后判断是否合法即可。

具体的操作其实就是\(<<,>>\)之后\(\&\)一下即可,这个自己看

那么这样时限可能有点紧,我们还可以预处理一下每一行的合法情况,然后每次只枚举这些合法情况

当然还有些dalao说可以两行一起处理,这样会更快

反正我这么菜肯定不会,其他的看CODE吧

// luogu-judger-enable-o2
#include<cstdio>
using namespace std;
const int N=10;
long long f[N][(1<<N)+5][N*N],ans;
int n,m,tot,t[(1<<N)+5];
bool c[(1<<N)+5];
inline bool check(int x)
{
int flag=0;
while (x)
{
if ((x&1)&flag) return 0;
flag=x&1; x>>=1;
} return 1;
}
inline int calc(int x)
{
int res=0; while (x) res+=x&1,x>>=1; return res;
}
inline bool judge(int x,int y)
{
return !(x&y||x&(y<<1)||(x<<1)&y);
}
int main()
{
scanf("%d%d",&n,&m); register int i,j,k,s; tot=(1<<n)-1;
for (i=0;i<=tot;++i)
c[i]=check(i),t[i]=calc(i);
for (i=0;i<=tot;++i)
if (c[i]) f[1][i][t[i]]=1;
for (i=2;i<=n;++i)
for (j=0;j<=tot;++j)
if (c[j]) for (k=0;k<=tot;++k)
if (c[k]&&judge(j,k))
for (s=m;s>=t[j];--s) f[i][j][s]+=f[i-1][k][s-t[j]];
for (i=0;i<=tot;++i)
ans+=f[n][i][m];
return printf("%lld",ans),0;
}

Luogu P1896 [SCOI2005]互不侵犯的更多相关文章

  1. 洛谷 P1896 [SCOI2005]互不侵犯

    洛谷 P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8 ...

  2. 洛谷P1896 [SCOI2005]互不侵犯King

    P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...

  3. 洛谷——P1896 [SCOI2005]互不侵犯

    P1896 [SCOI2005]互不侵犯 状压DP入门题 状压DP一般需要与处理状态是否合法,节省时间 设定状态dp[i][j][k]表示第i行第j个状态选择国王数为k的方案数 $dp[i][j][n ...

  4. P1896 [SCOI2005] 互不侵犯 方法记录

    原题链接 [SCOI2005] 互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子 ...

  5. 洛谷 P1896 [SCOI2005]互不侵犯 (状态压缩DP)

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...

  6. 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)

    洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...

  7. 洛谷 P1896 [SCOI2005]互不侵犯King

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入输出格式 输入格式: 只有一行,包 ...

  8. P1896 [SCOI2005]互不侵犯King

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入输出格式 输入格式: 只有一行,包 ...

  9. 洛谷P1896 [SCOI2005]互不侵犯King【状压DP】

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入格式: 只有一行,包含两个数N,K ...

随机推荐

  1. beego+vue父子组件通信(父子页面传值、父子组件传值、父子路由传值)

    场景:有head和foot,为父组件 侧栏tree为子组件 点击tree,右侧孙组件根据点击tree的id,来更改表格内容. 首先是父子(本例中是子组件与孙组件)通信,目前是父传到子,暂时还没有子传到 ...

  2. Expo大作战(三十)--expo sdk api之Permissions(权限管理模块),Pedometer(计步器api)

    简要:本系列文章讲会对expo进行全面的介绍,本人从2017年6月份接触expo以来,对expo的研究断断续续,一路走来将近10个月,废话不多说,接下来你看到内容,讲全部来与官网 我猜去全部机翻+个人 ...

  3. [20180317]12c TABLE ACCESS BY INDEX ROWID BATCHED.txt

    [20180317]12c TABLE ACCESS BY INDEX ROWID BATCHED.txt --//简单探究12c TABLE ACCESS BY INDEX ROWID BATCHE ...

  4. Python零基础学习系列之三--Python编辑器选择

    上一篇文章记录了怎么安装Python环境,同时也成功的在电脑上安装好了Python环境,可以正式开始自己的编程之旅了.但是现在又有头疼的事情,该用什么来写Python程序呢,该用什么来执行Python ...

  5. 【PAT】B1080 MOOC期终成绩(25 分)

    还是c++好用,三部分输入直接用相同的方法, 用map映射保存学生在结构体数组中的下标. 结构体保存学生信息,其中期末成绩直接初始化为-1, 注意四舍五入 此题还算简单 #include<ios ...

  6. javascript闭包—围观大神如何解释闭包

    闭包的概念已经出来很长时间了,网上资源一大把,本着拿来主意的方法来看看. 这一篇文章 学习Javascript闭包(Closure) 是大神阮一峰的博文,作者循序渐进,讲的很透彻.下面一一剖析. 1. ...

  7. 超详细!Github团队协作教程(Gitkraken版)

    超详细!Github团队协作教程(Gitkraken版) 一.前期工作 1. 在 Github 上创建 organization step1. 登录Github网站,点击右上角头像,选择 " ...

  8. 解决input框黄色背景问题(转)

    input:-webkit-autofill { box-shadow: 0 0 0px 1000px white inset !important;} <form action="l ...

  9. React脚手架创建一个React应用以及项目目录结构详解

    react脚手架 用来帮助程序员快速创建一个基于xxx库的模板项目,包含了所有需要的配置,指定好了所有的依赖,可以直接安装/编译/运行一个简单效果 react提供了一个专门用于创建react项目的脚手 ...

  10. 环境变量(environment variable)

    环境变量是什么 环境变量指的就是操作系统当中的一些变量.可以通过修改环境变量,来对计算机进行配置(主要是来配置一些路径的) 查看环境变量右键 计算机(此电脑),选择属性——系统界面左侧选择 高级系统设 ...