[Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子:
[Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子:
mydf001=sqlContext.read.format("jdbc").option("url","jdbc:mysql://localhost/loudacre")\
.option("dbtable","accounts").option("user","training").option("password","training").load()
In [10]: mydf001=sqlContext.read.format("jdbc").option("url","jdbc:mysql://localhost/loudacre")\
....: .option("dbtable","accounts").option("user","training").option("password","training").load()
17/10/03 05:59:53 INFO hive.HiveContext: default warehouse location is /user/hive/warehouse
17/10/03 05:59:53 INFO hive.HiveContext: Initializing metastore client version 1.1.0 using Spark classes.
17/10/03 05:59:53 INFO client.ClientWrapper: Inspected Hadoop version: 2.6.0-cdh5.7.0
17/10/03 05:59:53 INFO client.ClientWrapper: Loaded org.apache.hadoop.hive.shims.Hadoop23Shims for Hadoop version 2.6.0-cdh5.7.0
17/10/03 05:59:56 INFO hive.metastore: Trying to connect to metastore with URI thrift://localhost.localdomain:9083
17/10/03 05:59:56 INFO hive.metastore: Opened a connection to metastore, current connections: 1
17/10/03 05:59:56 INFO hive.metastore: Connected to metastore.
17/10/03 05:59:56 INFO session.SessionState: Created local directory: /tmp/c2d22d09-7425-4bb3-94c3-39cb32267c7d_resources
17/10/03 05:59:56 INFO session.SessionState: Created HDFS directory: /tmp/hive/training/c2d22d09-7425-4bb3-94c3-39cb32267c7d
17/10/03 05:59:56 INFO session.SessionState: Created local directory: /tmp/training/c2d22d09-7425-4bb3-94c3-39cb32267c7d
17/10/03 05:59:56 INFO session.SessionState: Created HDFS directory: /tmp/hive/training/c2d22d09-7425-4bb3-94c3-39cb32267c7d/_tmp_space.db
17/10/03 05:59:56 INFO session.SessionState: No Tez session required at this point. hive.execution.engine=mr.
In [11]:
In [11]: type(mydf001)
Out[11]: pyspark.sql.dataframe.DataFrame
In [12]: mydf001.count()
17/10/03 06:00:29 INFO spark.SparkContext: Starting job: count at NativeMethodAccessorImpl.java:-2
17/10/03 06:00:29 INFO scheduler.DAGScheduler: Registering RDD 2 (count at NativeMethodAccessorImpl.java:-2)
17/10/03 06:00:29 INFO scheduler.DAGScheduler: Got job 0 (count at NativeMethodAccessorImpl.java:-2) with 1 output partitions
17/10/03 06:00:29 INFO scheduler.DAGScheduler: Final stage: ResultStage 1 (count at NativeMethodAccessorImpl.java:-2)
17/10/03 06:00:29 INFO scheduler.DAGScheduler: Parents of final stage: List(ShuffleMapStage 0)
17/10/03 06:00:29 INFO scheduler.DAGScheduler: Missing parents: List(ShuffleMapStage 0)
17/10/03 06:00:29 INFO scheduler.DAGScheduler: Submitting ShuffleMapStage 0 (MapPartitionsRDD[2] at count at NativeMethodAccessorImpl.java:-2), which has no missing parents
17/10/03 06:00:30 INFO storage.MemoryStore: Block broadcast_0 stored as values in memory (estimated size 11.0 KB, free 11.0 KB)
17/10/03 06:00:31 INFO storage.MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 5.2 KB, free 16.1 KB)
17/10/03 06:00:31 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on localhost:36793 (size: 5.2 KB, free: 208.8 MB)
17/10/03 06:00:31 INFO spark.SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1006
17/10/03 06:00:31 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ShuffleMapStage 0 (MapPartitionsRDD[2] at count at NativeMethodAccessorImpl.java:-2)
17/10/03 06:00:31 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 1 tasks
17/10/03 06:00:31 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, localhost, partition 0,PROCESS_LOCAL, 1911 bytes)
17/10/03 06:00:31 INFO executor.Executor: Running task 0.0 in stage 0.0 (TID 0)
17/10/03 06:00:32 INFO codegen.GenerateMutableProjection: Code generated in 425.82589 ms
17/10/03 06:00:32 INFO codegen.GenerateUnsafeProjection: Code generated in 78.278589 ms
17/10/03 06:00:33 INFO codegen.GenerateMutableProjection: Code generated in 84.676206 ms
17/10/03 06:00:33 INFO codegen.GenerateUnsafeRowJoiner: Code generated in 60.144399 ms
17/10/03 06:00:33 INFO codegen.GenerateUnsafeProjection: Code generated in 95.977074 ms
17/10/03 06:00:34 INFO jdbc.JDBCRDD: closed connection
17/10/03 06:00:34 INFO executor.Executor: Finished task 0.0 in stage 0.0 (TID 0). 1334 bytes result sent to driver
17/10/03 06:00:34 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 3081 ms on localhost (1/1)
17/10/03 06:00:34 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
17/10/03 06:00:34 INFO scheduler.DAGScheduler: ShuffleMapStage 0 (count at NativeMethodAccessorImpl.java:-2) finished in 3.163 s
17/10/03 06:00:34 INFO scheduler.DAGScheduler: looking for newly runnable stages
17/10/03 06:00:34 INFO scheduler.DAGScheduler: running: Set()
17/10/03 06:00:34 INFO scheduler.DAGScheduler: waiting: Set(ResultStage 1)
17/10/03 06:00:34 INFO scheduler.DAGScheduler: failed: Set()
17/10/03 06:00:34 INFO scheduler.DAGScheduler: Submitting ResultStage 1 (MapPartitionsRDD[5] at count at NativeMethodAccessorImpl.java:-2), which has no missing parents
17/10/03 06:00:34 INFO storage.MemoryStore: Block broadcast_1 stored as values in memory (estimated size 12.1 KB, free 28.3 KB)
17/10/03 06:00:34 INFO storage.MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 5.6 KB, free 33.9 KB)
17/10/03 06:00:34 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in memory on localhost:36793 (size: 5.6 KB, free: 208.8 MB)
17/10/03 06:00:34 INFO spark.SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:1006
17/10/03 06:00:34 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 1 (MapPartitionsRDD[5] at count at NativeMethodAccessorImpl.java:-2)
17/10/03 06:00:34 INFO scheduler.TaskSchedulerImpl: Adding task set 1.0 with 1 tasks
17/10/03 06:00:34 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 1.0 (TID 1, localhost, partition 0,NODE_LOCAL, 1999 bytes)
17/10/03 06:00:34 INFO executor.Executor: Running task 0.0 in stage 1.0 (TID 1)
17/10/03 06:00:34 INFO storage.ShuffleBlockFetcherIterator: Getting 1 non-empty blocks out of 1 blocks
17/10/03 06:00:34 INFO storage.ShuffleBlockFetcherIterator: Started 0 remote fetches in 32 ms
17/10/03 06:00:35 INFO codegen.GenerateMutableProjection: Code generated in 52.636353 ms
17/10/03 06:00:35 INFO codegen.GenerateMutableProjection: Code generated in 49.757505 ms
17/10/03 06:00:35 INFO executor.Executor: Finished task 0.0 in stage 1.0 (TID 1). 1666 bytes result sent to driver
17/10/03 06:00:35 INFO scheduler.DAGScheduler: ResultStage 1 (count at NativeMethodAccessorImpl.java:-2) finished in 0.795 s
17/10/03 06:00:35 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 1.0 (TID 1) in 789 ms on localhost (1/1)
17/10/03 06:00:35 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool
17/10/03 06:00:35 INFO scheduler.DAGScheduler: Job 0 finished: count at NativeMethodAccessorImpl.java:-2, took 6.451521 s
Out[12]: 129761
In [13]:
[Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子:的更多相关文章
- [Spark][Python]spark 从 avro 文件获取 Dataframe 的例子
[Spark][Python]spark 从 avro 文件获取 Dataframe 的例子 从如下地址获取文件: https://github.com/databricks/spark-avro/r ...
- Spark(Python) 从内存中建立 RDD 的例子
Spark(Python) 从内存中建立 RDD 的例子: myData = ["Alice","Carlos","Frank"," ...
- [Spark][Python]Spark Python 索引页
Spark Python 索引页 为了查找方便,建立此页 === RDD 基本操作: [Spark][Python]groupByKey例子
- [spark][python]Spark map 处理
map 就是对一个RDD的各个元素都施加处理,得到一个新的RDD 的过程 [training@localhost ~]$ cat names.txtYear,First Name,County,Sex ...
- crontab定时运行python脚本访问MySQL遇到问题
最近写了一个python脚本来定时备份MySQL数据库.具体实现如下: 1)python脚本中使用os.system("mysqldump -h127.0.0.1 -uroot -ppass ...
- python+pymysql访问mysql数据库
今天跟大家分享两种场景的python连接MySQL方法: 场景一:连接远程MySQL 首先,安装pymysql:在命令行执行pip install pymysql指令. 然后,导入pymysql: i ...
- [Spark][Python]Spark Join 小例子
[training@localhost ~]$ hdfs dfs -cat people.json {"name":"Alice","pcode&qu ...
- 今天看到可以用sqlalchemy在python上访问Mysql
from sqlalchemy import create_engine, MetaData, and_ 具体的还没有多看.
- 基础 ADO.NET 访问MYSQL 与 MSSQL 数据库例子
虽然实际开发时都是用 Entity 了,但是基础还是要掌握和复习的 ^^ //set connection string, server,database,username,password MySq ...
随机推荐
- loadrunner 场景设计-添加Unix、Linux Resources计数器
场景设计-添加Unix.Linux Resources计数器 by:授客 QQ:1033553122 A. 目的 监控要测试的Unix.Linux服务器的资源使用情况 Linux CentOS为例 ...
- retrofit框架接口调用时候报Throwing new exception
最近在开发的时候遇到了一个很坑的问题,在三星6.0手机上请求接口时候报了一个异常:Throwing new exception 'length=1658; index=3248' with unexp ...
- mac挂载分区包括EFI 或者任何隐藏分区
1.mac终端下的diskutil命令是用来操作磁盘的 diskutil list #显示当前pc所有的磁盘 2.例如我们要挂载u盘中的efi分区 ,确定你的efi分区的 identified 我的是 ...
- aws s3文件上传设置accesskey、secretkey、sessiontoken
背景: 最近跟进的项目会封装aws S3资源管理细节,对外提供获取文件上传凭证的API,业务方使用获取到的凭证信息直接请求aws进行文件上传.因此,测试过程需要验证S3文件上传的有效性.aws官网有提 ...
- TensorFlow实现梯度下降
# -*- coding: utf-8 -*- """ Created on Mon Oct 15 17:38:39 2018 @author: zhen "& ...
- 【PAT】B1070 结绳(25 分)
此题太给其他25分的题丢人了,只值15分 注意要求最终结果最长,而且向下取整 #include<stdio.h> #include<algorithm> using names ...
- book118免费下载文档方法【转】
需要用的工具: 1.360浏览器 2.点"全屏预览",然后把鼠标放在"下载该文档",右键"审查元素",找到 途中箭头指向的标签(如图) 3. ...
- sql中的exists用法
查询选修语文(cno=21)的学生名单 SELECT sname FROM student WHERE EXISTS ( SELECT FROM sc WHERE sc.cno = AND sc.sn ...
- Zabbix安装 Grafana安装
每天学习一点点 编程PDF电子书免费下载: http://www.shitanlife.com/code 前提: 先需要安装好 lamp环境. 官方文档: https://www.zabbix.com ...
- WINS服务器与DNS服务器有什么区别?
1.WINS实现的是IP地址和计算机名称的映射,DNS实现的是IP地址和域名的映射.2.WINS作用的范围是某个内部网络,DNS的范围是整个互联网.简单说明一下:WINS实现的是IP地址和计算机名称的 ...