2018.08.31 bzoj1426 收集邮票(期望dp)
描述
有n种不同的邮票,皮皮想收集所有种类的邮票。唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且 买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n。但是由于凡凡也很喜欢邮票,所以皮皮购买第k 张邮票需要支付k元钱。现在皮皮手中没有邮票,皮皮想知道自己得到所有种类的邮票需要花费的钱数目的期望.
输入
一行,一个数字N,N<=10000
输出
要付出多少钱. 保留二位小数
样例输入
3
样例输出
21.25
标签
bzoj1426
期望dp好题。
这题貌似要倒起推状态。
我们用g[i]表示已经收集i种邮票,收集全需要的期望次数。
f[i]表示已经收集i种邮票,收集全需要的期望花费。
这样发现
i的状态有i/n" role="presentation" style="position: relative;">i/ni/n的概率还是i的状态,有(n−i)/n" role="presentation" style="position: relative;">(n−i)/n(n−i)/n的概率变成(i+1)的状态(因此倒着推方便)。
于是有状态转移方程(化简后):
g[i]=g[i+1]+n/(n−i)" role="presentation" style="position: relative;">g[i]=g[i+1]+n/(n−i)g[i]=g[i+1]+n/(n−i)
f[i]=g[i]∗(n/(n−i))+f[i+1]" role="presentation" style="position: relative;">f[i]=g[i]∗(n/(n−i))+f[i+1]f[i]=g[i]∗(n/(n−i))+f[i+1]
代码:
#include<bits/stdc++.h>
#define N 10005
using namespace std;
int n;
double f[N],g[N];
int main(){
cin>>n,f[n]=0,g[n]=0;
for(int i=n-1;~i;--i)g[i]=g[i+1]+1.0*n/(n-i),f[i]=1.0*n*g[i]/(n-i)+f[i+1];
printf("%.2lf",f[0]);
return 0;
}
2018.08.31 bzoj1426 收集邮票(期望dp)的更多相关文章
- 【BZOJ】1426: 收集邮票 期望DP
[题意]有n种不同的邮票,第i次可以花i元等概率购买到一种邮票,求集齐n种邮票的期望代价.n<=10^4. [算法]期望DP [题解]首先设g[i]表示已拥有i张邮票集齐的期望购买次数,根据全期 ...
- 2018.08.30 bzoj4318: OSU!(期望dp)
传送门 简单期望dp. 感觉跟Easy差不多,就是把平方差量进阶成了立方差量,原本维护的是(x+1)2−x2" role="presentation" style=&qu ...
- 2018.08.30 Tyvj1952 Easy(期望dp)
Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连 ...
- 【BZOJ1426】收集邮票 期望DP
题目大意 有\(n\)种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是\(n\)种邮票中的哪一种是等概率的,概率均为\(\frac{1} ...
- 收集邮票 (概率dp)
收集邮票 (概率dp) 题目描述 有 \(n\) 种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是 \(n\) 种邮票中的哪一种是等概率 ...
- 【BZOJ1426】收集邮票 期望
[BZOJ1426]收集邮票 Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的, ...
- 2018.08.31 bzoj1419 Red is good(期望dp)
描述 桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付 出1美元.可以随时停止翻牌,在最优策略下平均能得到多少钱. 输入 一行输入两个数R,B,其 ...
- bzoj1426 (洛谷P4550) 收集邮票——期望
题目:https://www.luogu.org/problemnew/show/P4550 推式子……:https://blog.csdn.net/pygbingshen/article/detai ...
- 2018.08.31 bzoj3566: [SHOI2014]概率充电器(概率dp+容斥原理)
传送门 概率dp好题啊. 用f[i]" role="presentation" style="position: relative;">f[i] ...
随机推荐
- clip-path的任意元素的碎片拼接动效
看了张大神的这篇文章后自己写的,兼容性不好clip-path要加-webkit- css #test img{position: absolute;} .active .clip{ will-chan ...
- word自动生成章节标题
一级目录 二级目录 三级标题
- UI5-文档-4.27-Mock Server Configuration
我们只是在一个真实的服务上运行我们的应用程序,但是对于开发和测试我们的应用程序,我们不希望依赖于“真实”服务的可用性,或者在数据服务所在的系统上增加额外的负载. 这个系统就是所谓的后端系统,我们现在将 ...
- MySQL的事务处理及隔离级别
事务是DBMS得执行单位.它由有限得数据库操作序列组成得.但不是任意得数据库操作序列都能成为事务.一般来说,事务是必须满足4个条件(ACID) 原子性(Autmic):事务在执行性,要 ...
- Alpha Level (Significance Level)
1.Alpha Level (Significance Level,显著水平): What is it? 显著性水平α是指当零假设是正确的,但做出了错误决策的概率(即一类错误的概率).Alpha水平( ...
- 大型运输行业实战_day08_1_memcache缓存生产应用
1.memcache使用环境搭建 1.安装memcached服务器 安装方法 以管理员身份打开cmd,在cmd中执行如下命令: 注意:在执行该命令时必须在memcached.exe文件下执行. 2.开 ...
- CentOS 7安装配置Redis数据库
Redis源码获取 1.进入Redis官网获取Redis最新稳定版下载地址 2.通过wget命令下载 Redis 源代码. Redis编译 1.通过tar -xvf redis-3.0.2.tar ...
- zoj1109-Language of FatMouse 【字典树】
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=109 Language of FatMouse Time Limit: 10 S ...
- Jiu Yuan Wants to Eat(树链剖分+线段树延迟标记)
Jiu Yuan Wants to Eat https://nanti.jisuanke.com/t/31714 You ye Jiu yuan is the daughter of the Grea ...
- jsoncpp在Windows和Linux下的安装
Windows下: 参考这个网站,没什么问题,注意MTd这些选对就行了. http://www.cppblog.com/wanghaiguang/archive/2013/12/26/205020.h ...