受限玻尔兹曼机是一种生成式随机神经网络(generative stochastic neural network), 详细介绍可见我的博文《受限玻尔兹曼机(RBM)简介》, 本文主要介绍RBM在协同过滤的应用。

1. 受限玻尔兹曼机简单介绍

传统的受限玻尔兹曼机是一种如下图所示, 其由一些可见单元(visible unit,对应可见变量,亦即数据样本)和一些隐藏单元(hidden unit,对应隐藏变量)构成,可见变量和隐藏变量都是二元变量,亦即其状态取{0,1}。整个网络是一个二部图,只有可见单元和隐藏单元之间才会存在边,可见单元之间以及隐藏单元之间都不会有边连接。

将该模型应用到协同过滤需要解决以下两个问题:

  1. 鉴于RBM中的单元都是二元变量, 如果用这些二元变量来对整数值的评分建模?
  2. 用户的打分是非常稀疏的, 亦即用户只会对很少的物品(比如电影)打分, 如何处理这些缺失的评分?

2. 基于RBM的协同过滤

R. R. Salakhutdinov等人提出了一种使用RBM来进行协同过滤的方法:

假设有m个电影, 则使用m个softmax单元来作为可见单元来构造RBM.  对于每个用户使用不同的RBM, 这些不同的RBM仅仅是可见单元不同, 因为不同的用户会对不同的电影打分, 所有的这些RBM的可见单元共用相同的偏置以及和隐藏单元的连接权重W. 该方法很好的解决了之前提到的问题:

  1. 使用softmax来对用户的评分进行建模, softmax是一种组合可见单元, 包含k个二元单元, 第i个二元单元当且只当用户对该电影打分为i时才会置为1.
  2. 如果一个用户没有对第j个电影评分, 则该用户的RBM中不存在第j个softmax单元.

该模型如下图所示:

可是单元V和隐藏单元h的条件概率为:

模型参数的学习过程非常类似于RBM的DC算法:

训练完模型后, 计算用户对未评价物品的预测评分的算法为:

3. 条件RBM(Conditional Restricted Boltzmann Machine)

以上的RBM只用到了用户对电影的评分, 忽视了另外一种非常重要的信息: 用户浏览过哪些电影(但是没打分, 或者打分未知), 条件RBM把这种信息也进行了建模:

其中的r是一个m维的向量, ri为1代表用户对浏览过第i个电影, 加入r后的模型的条件概率为:

权重D的学习过程为:

参考文献:

[1]. Ruslan Salakhutdinov, Andriy Mnih, Geoffrey Hinton. Restricted Boltzmann Machines for Collaborative Filtering. 2007, ICML.

[2]. Gilles Louppe, Pierre Geurts. Collaborative filtering: Scalable approaches using restricted Boltzmann machines.

[3]. 受限玻尔兹曼机(RBM)简介

基于受限玻尔兹曼机(RBM)的协同过滤的更多相关文章

  1. 深度学习方法:受限玻尔兹曼机RBM(一)基本概念

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 最近在复习经典机器学习算法的同 ...

  2. 推荐系统| ② 离线推荐&基于隐语义模型的协同过滤推荐

    一.离线推荐服务 离线推荐服务是综合用户所有的历史数据,利用设定的离线统计算法和离线推荐算法周期性的进行结果统计与保存,计算的结果在一定时间周期内是固定不变的,变更的频率取决于算法调度的频率. 离线推 ...

  3. 深度学习方法:受限玻尔兹曼机RBM(二)网络模型

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入 上解上一篇RBM(一)基本概念, ...

  4. 深度学习方法:受限玻尔兹曼机RBM(四)对比散度contrastive divergence,CD

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入 上篇讲到,如果用Gibbs Sa ...

  5. 深度学习方法:受限玻尔兹曼机RBM(三)模型求解,Gibbs sampling

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 接下来重点讲一下RBM模型求解 ...

  6. 受限玻尔兹曼机RBM

    相关算法 python代码参考http://blog.csdn.net/zc02051126/article/details/9668439#(作少量修改与注释) #coding:utf8 impor ...

  7. 受限玻尔兹曼机RBM—简易详解

  8. 受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)

    这篇写的主要是翻译网上一篇关于受限玻尔兹曼机的tutorial,看了那篇博文之后感觉算法方面讲的很清楚,自己收获很大,这里写下来作为学习之用. 原文网址为:http://imonad.com/rbm/ ...

  9. 基于协同过滤的个性化Web推荐

    下面这是论文笔记,其实主要是摘抄,这片博士论文很有逻辑性,层层深入,所以笔者保留的比较多. 看到第二章,我发现其实这片文章对我来说更多是科普,科普吧…… 一.论文来源 Personalized Web ...

随机推荐

  1. windows下的C++ socket服务器(1)

    windows下的一个C++ socket服务器,用到了C++11的相关内容,现在还不是很完善,以后会不断改进的! #include <winsock2.h>//1 以后会用这种方式对特定 ...

  2. [cnbeta] 波音系列飞机价格。。。

    https://www.cnbeta.com/articles/tech/786745.htm 单价最便宜的是波音737-700,为0.858亿美元(约合5.96亿元). 评论网友调侃,“你家能满40 ...

  3. crosses initialization of “XXX” 的问题

    在switch-case中定义了变量,用g++编译的时候报错crosses initialization of “XXX” ,在网上一查,说是gcc要求变量的定义不能位于goto之后 将变量定义放在s ...

  4. JVM内存管理机制

    Java与C++之间有一堆由内存动态分配与垃圾收集技术所围成的“高墙”,墙外面的人想进去,墙里面的人却想出来. —— <深入理解Java虚拟机:JVM高级特性与最佳实践> Java虚拟机在 ...

  5. 修改grub需要修改权限命令

    Ubantu每次更新都会把用于引导的grub文件重置,导致开机后,又找不到系统,看来以后还是要备份一下grub文件.另外,这周开始学习python,先学习Linux系统的命令行操作,很多操作是相通的. ...

  6. 安装MySql出现Error Nr.1045的解决办法

    如图,最后一步出现这个错误框 这是因为上次安装过MySql,其用户数据在卸载的时候没有被删除掉,解决办法如下: 显示隐藏的文件夹,打开C盘,找到下图文件删除之 删除之后再安装一遍MySQL,就可以了

  7. png?wxfrom=5&wx_lazy=1

    作为一名游戏行业的视频&平面设计师,平时的工作就是为公司发行的游戏制作宣传视频.广告.平面宣传图,打交道最多的自然就是Adobe家族的设计软件,Photoshop.AfterEffects.P ...

  8. 【BZOJ1922】大陆争霸(最短路)

    [BZOJ1922]大陆争霸(最短路) 题面 BZOJ 洛谷 题解 最短路变形题. 定义\(dis\)表示最短路,\(d\)表示最早可以进入当前点的时间.显然\(d=max(max(dis_v,d_v ...

  9. Shell中[]里面的条件判断

    1.字符串判断 str1 = str2 当两个串有相同内容.长度时为真 str1 != str2 当串str1和str2不等时为真 -n str1 当串的长度大于0时为真(串非空) -z str1 当 ...

  10. BZOJ4416 [Shoi2013]阶乘字符串 【序列自动机 + 状压dp】

    题目链接 BZOJ4416 题解 建立序列自动机,即预处理数组\(nxt[i][j]\)表示\(i\)位置之后下一个\(j\)出现的位置 设\(f[i]\)表示合法字符集合为\(i\)的最短前缀,枚举 ...