受限玻尔兹曼机是一种生成式随机神经网络(generative stochastic neural network), 详细介绍可见我的博文《受限玻尔兹曼机(RBM)简介》, 本文主要介绍RBM在协同过滤的应用。

1. 受限玻尔兹曼机简单介绍

传统的受限玻尔兹曼机是一种如下图所示, 其由一些可见单元(visible unit,对应可见变量,亦即数据样本)和一些隐藏单元(hidden unit,对应隐藏变量)构成,可见变量和隐藏变量都是二元变量,亦即其状态取{0,1}。整个网络是一个二部图,只有可见单元和隐藏单元之间才会存在边,可见单元之间以及隐藏单元之间都不会有边连接。

将该模型应用到协同过滤需要解决以下两个问题:

  1. 鉴于RBM中的单元都是二元变量, 如果用这些二元变量来对整数值的评分建模?
  2. 用户的打分是非常稀疏的, 亦即用户只会对很少的物品(比如电影)打分, 如何处理这些缺失的评分?

2. 基于RBM的协同过滤

R. R. Salakhutdinov等人提出了一种使用RBM来进行协同过滤的方法:

假设有m个电影, 则使用m个softmax单元来作为可见单元来构造RBM.  对于每个用户使用不同的RBM, 这些不同的RBM仅仅是可见单元不同, 因为不同的用户会对不同的电影打分, 所有的这些RBM的可见单元共用相同的偏置以及和隐藏单元的连接权重W. 该方法很好的解决了之前提到的问题:

  1. 使用softmax来对用户的评分进行建模, softmax是一种组合可见单元, 包含k个二元单元, 第i个二元单元当且只当用户对该电影打分为i时才会置为1.
  2. 如果一个用户没有对第j个电影评分, 则该用户的RBM中不存在第j个softmax单元.

该模型如下图所示:

可是单元V和隐藏单元h的条件概率为:

模型参数的学习过程非常类似于RBM的DC算法:

训练完模型后, 计算用户对未评价物品的预测评分的算法为:

3. 条件RBM(Conditional Restricted Boltzmann Machine)

以上的RBM只用到了用户对电影的评分, 忽视了另外一种非常重要的信息: 用户浏览过哪些电影(但是没打分, 或者打分未知), 条件RBM把这种信息也进行了建模:

其中的r是一个m维的向量, ri为1代表用户对浏览过第i个电影, 加入r后的模型的条件概率为:

权重D的学习过程为:

参考文献:

[1]. Ruslan Salakhutdinov, Andriy Mnih, Geoffrey Hinton. Restricted Boltzmann Machines for Collaborative Filtering. 2007, ICML.

[2]. Gilles Louppe, Pierre Geurts. Collaborative filtering: Scalable approaches using restricted Boltzmann machines.

[3]. 受限玻尔兹曼机(RBM)简介

基于受限玻尔兹曼机(RBM)的协同过滤的更多相关文章

  1. 深度学习方法:受限玻尔兹曼机RBM(一)基本概念

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 最近在复习经典机器学习算法的同 ...

  2. 推荐系统| ② 离线推荐&基于隐语义模型的协同过滤推荐

    一.离线推荐服务 离线推荐服务是综合用户所有的历史数据,利用设定的离线统计算法和离线推荐算法周期性的进行结果统计与保存,计算的结果在一定时间周期内是固定不变的,变更的频率取决于算法调度的频率. 离线推 ...

  3. 深度学习方法:受限玻尔兹曼机RBM(二)网络模型

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入 上解上一篇RBM(一)基本概念, ...

  4. 深度学习方法:受限玻尔兹曼机RBM(四)对比散度contrastive divergence,CD

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入 上篇讲到,如果用Gibbs Sa ...

  5. 深度学习方法:受限玻尔兹曼机RBM(三)模型求解,Gibbs sampling

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 接下来重点讲一下RBM模型求解 ...

  6. 受限玻尔兹曼机RBM

    相关算法 python代码参考http://blog.csdn.net/zc02051126/article/details/9668439#(作少量修改与注释) #coding:utf8 impor ...

  7. 受限玻尔兹曼机RBM—简易详解

  8. 受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)

    这篇写的主要是翻译网上一篇关于受限玻尔兹曼机的tutorial,看了那篇博文之后感觉算法方面讲的很清楚,自己收获很大,这里写下来作为学习之用. 原文网址为:http://imonad.com/rbm/ ...

  9. 基于协同过滤的个性化Web推荐

    下面这是论文笔记,其实主要是摘抄,这片博士论文很有逻辑性,层层深入,所以笔者保留的比较多. 看到第二章,我发现其实这片文章对我来说更多是科普,科普吧…… 一.论文来源 Personalized Web ...

随机推荐

  1. 关闭Centos5.5的写磁盘I/O功能

    一个Linux文件默认有3个时间. atime:对此文件的访问时间. ctime:此文件inode发生变化的时间. mtime:此文件的修改时间. 如果有多个小文件(比如Web服务器的页面上有多个小图 ...

  2. mongodb的命令介绍

    db.help() 查看库级别的命令 db.stats() 查看数据库状态 db.version() 查看数据库版本 db.serverStatus() 查看数据库服务器状态 db.mycoll.he ...

  3. Robot Framework 教程 (5) - 连接Oracel数据库

    Robot Framework 提供了多种Library.其中Database Library可用来连接操作数据库. 1.安装Database Library 打开Robot Framework官网, ...

  4. Android UI测量、布局、绘制过程探究

    在上一篇博客<Android中Activity启动过程探究>中,已经从ActivityThread.main()开始,一路摸索到ViewRootImpl.performTraversals ...

  5. (很难啊)如何实时获取DBGrid 中当前单元格输入的内容? [问题点数:100分,结帖人yifawu100]

    如何获取DBGrid 中当前单元格输入的内容? 还没输入完成,我想实时获取 Cell中的内容,以便作其他处理,用什么事件呢? 所以Field的Onchange事件是没用的. DBGrid1.Selec ...

  6. Atcoder arc080E Young Maids(线段树+优先队列)

    给出一个n排列,每次可以选择相邻的两个数字放在新的排列首部,问最后形成的新的排列字典序最小是? 考虑新排列的第一个数字,则应是下标为奇数的最小数,下标不妨设为i.第二个数字应该下标大于i且为偶数的最小 ...

  7. 浅谈 PHP Yaf 开启session之后对响应头的影响

    当使用PHP Yaf框架,如果某个 Action 在返回响应(输出页面或者返回json)之前,启用了session,那么将会在响应头里面加上强制不缓存的响应头,也就是如下的三个响应头. Expires ...

  8. Paxos Made Simple【翻译】

    Paxos一致性算法——分布式系统中的经典算法,论文本身也有一段有趣的故事.一致性问题是分布式系统的根本问题之一,在论文中,作者一步步的加强最初一致性问题(2.1节提出的问题)的约束条件,最终导出了一 ...

  9. ListView嵌套webView 事件冲突解决

    如图,红色部分为WebView,作为ListView头部存在,测试视频(h5)要左右滑动,ListView要上下滑动,保证视频控件和下面评论部分可以显示,但是这个时候就存在WebView横向滑动和Li ...

  10. Android学习笔记——关于onConfigurationChanged(转)

    从事Android开发,免不了会在应用里嵌入一些广告SDK,在嵌入了众多SDK后,发现几乎每个要求在AndroidManifest.xml申明Activity的广告SDK都会要求加上注明这么一句属性: ...