1497: [NOI2006]最大获利

Description

新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N) THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和)

Input

输入文件中第一行有两个正整数N和M 。第二行中有N个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。以下M行,第(i + 2)行的三个数Ai, Bi和Ci描述第i个用户群的信息。所有变量的含义可以参见题目描述。

Output

你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。

Sample Input

5 5
1 2 3 4 5
1 2 3
2 3 4
1 3 3
1 4 2
4 5 3

Sample Output

4

HINT

【样例说明

选择建立1、2、3号中转站,则需要投入成本6,获利为10,因此得到最大收益4。

【评分方法】

本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。

【数据规模和约定】

80%的数据中:N≤200,M≤1 000。

100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。


  这道题目是经典的最大权闭合子图。典型做法是(请把“改点”自行脑补成“该点”):

  确实很有道理。忽然想起文理分科,便恍然大悟。最开始可以使用近乎贪心的策略,把所有的正权都容纳入内,再构造一张图,表示出依赖关系,若不割某边,则必割某边。每一次割边都视作一次损失,我们要让损失最小化,并且让图合法化,这就可以用最小割。净获利 = 获益之和 - 投入成本之和,若最开始选了,那么割去则意味着放弃此收益,若最开始没有选,则意味着这是成本,即投入该成本。如果要输出方案,就可以转化为输出最小割的方案,好强啊!反正我不会。

  最后说一句,不知道为什么,N开10^5才能过,不知道是为什么。(否则会RE)

  

 /**************************************************************
Problem: 1497
User: Doggu
Language: C++
Result: Accepted
Time:700 ms
Memory:10196 kb
****************************************************************/ #include <cstdio>
#include <cstring>
#include <algorithm>
template<class T>inline void readin(T &res) {
static char ch;
while((ch=getchar())<''||ch>'');
res=ch-;
while((ch=getchar())>=''&&ch<='')res=(res<<)+(res<<)+ch-;
}
const int N = ;
const int M = ;
struct Edge {int v,upre,cap,flow;}g[M];
int head[N], ne=-;
inline void adde(int u,int v,int cap) {
g[++ne]=(Edge){v,head[u],cap,},head[u]=ne;
g[++ne]=(Edge){u,head[v],,},head[v]=ne;
} int n, m, s, t; int d[N], cur[N], q[N], front, rear;
bool BFS() {
memset(d, ,sizeof(d));
front=rear=;q[rear++]=s;d[s]=;
while(front!=rear) {
int u=q[front++];
for( int i = head[u]; i != -; i = g[i].upre ) {
int v=g[i].v;
if(!d[v]&&g[i].cap>g[i].flow) q[rear++]=v,d[v]=d[u]+;
}
}
return d[t];
}
int DFS(int u,int a) {
if(u==t||a==) return a;
int flow=, f;
for( int &i = cur[u]; i != -; i = g[i].upre ) {
int v=g[i].v;
if(d[v]==d[u]+&&(f=DFS(v,std::min(a,g[i].cap-g[i].flow)))>) {
flow+=f;a-=f;g[i].flow+=f;g[i^].flow-=f;
if(a==) break;
}
}
if(!flow) d[u]=;
return flow;
}
int maxflow() {
int flow=; while(BFS()) {
memcpy(cur,head,sizeof(head));
flow+=DFS(s,0x3f3f3f3f);
}
return flow;
}
int main() {
memset(head,-,sizeof(head));
readin(n);readin(m);
int x, a, b, c, sum=;
s=n+m+;t=n+m+;
for( int i = ; i <= n; i++ ) {
readin(x);adde(i,t,x);
}
for( int i = ; i <= m; i++ ) {
readin(a);readin(b);readin(c);sum+=c;
adde(n+i,a,0x3f3f3f3f);
adde(n+i,b,0x3f3f3f3f);
adde(s,n+i,c);
}
n=n+m+;
//净获利=获益之和-投入成本之和(要么放弃c要么投入ab)
printf("%d\n",sum-maxflow());
return ;
}

dinic最小割建图

BZOJ 1497 [NOI2006]最大获利的更多相关文章

  1. BZOJ1497: [NOI2006]最大获利[最小割 最大闭合子图]

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 4375  Solved: 2142[Submit][Status] ...

  2. bzoj1497: [NOI2006]最大获利(最大权闭合子图)

    1497: [NOI2006]最大获利 题目:传送门 题解: %%%关于最大权闭合子图很好的入门题 简单说一下什么叫最大权闭合子图吧...最简单的解释就是正权边连源点,负权边连汇点(注意把边权改为正数 ...

  3. [bzoj1497][NOI2006]最大获利_网络流_最小割

    最大获利 bzoj-1497 题目大意:可以建立一个点,花费一定的代价:将已经建立的两个点之间连边,得到一定收益.有些节点之间是不允许连边的. 注释:1<=点数<=5,000,1<= ...

  4. Bzoj1497 [NOI2006]最大获利

    Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 4449  Solved: 2181 Description 新的技术正冲击着手机通讯市场,对于各大运营商来 ...

  5. BZOJ1497 [NOI2006]最大获利 网络流 最小割 SAP

    原文链接http://www.cnblogs.com/zhouzhendong/p/8371052.html 题目传送门 - BZOJ1497 题意概括 有n个站要被建立. 建立第i个站的花费为pi. ...

  6. BZOJ1497[NOI2006]最大获利——最大权闭合子图

    题目描述 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成 ...

  7. 【最大权闭合子图】BZOJ1497[NOI2006]-最大获利

    [题目大意] 建立第i个通讯中转站需要的成本为Pi(1≤i≤N).另外公司调查得出了所有期望中的用户群,一共M个.关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进 ...

  8. 【最大权闭合子图 最小割】bzoj1497: [NOI2006]最大获利

    最大权闭合子图的模型:今天才发现dinic板子是一直挂的…… Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在 ...

  9. bzoj1497 [NOI2006]最大获利 最大权闭合子图

    链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1497 思路 最大权闭合子图的裸题 一开始知道是这个最大权闭合子图(虽然我不知道名字),但是我 ...

随机推荐

  1. spring-boot rabbitMq 完整项目搭建,包括创建、发送、监听

    写在开始 rabbitMq 代码按照三部分介绍 第一部分 交换机和队列的创建 第二部分 消息发送 第三部分 消息监听 第一部分 1 建立queue 2 建立exchange 3 exchange绑定q ...

  2. Vim YouCompleteMe 安装配置

    YouCompleteMe是很强大的vim插件,可以提供强大的补齐功能,曾经多次尝试安装,都没有配置成功,最近在一个契机下,看到有同事的配置,自己在边尝试和边咨询后,终于也搞定了,遂记录下. 官网有最 ...

  3. 将React Native 集成进现有OC项目中(过程记录) 、jsCodeLocation 生成方式总结

    将RN集成到现有OC项目应该是最常见的,特别是已经有OC项目的,不太可能会去专门搞个纯RN的项目.又因为RN不同版本,引用的依赖可能不尽相同,所以特别说明下,本文参考的文档是React Native ...

  4. TeamWork#3,Week5,Bing Input Method vs Sogou Input Method

    现在电脑上用五笔的用户越来越少了,好的拼音输入法也是难求.必应输入法的前身英库拼音输入法来自微软亚洲研究院的多项基础研究成果.最新的必应输入法不仅保留了英库拼音输入法的各项优势,还结合了必应的搜索体验 ...

  5. TeamWork#3,Week5,The First Meeting of Our Team

    sixsix第一次会议记录 [会议时间]2014年10月23日星期四19:00-20:00 [会议形式]小组讨论 [会议地点]5号公寓 [会议主持]高雅智 [会议记录]张志浩 会议整体流程 一.签到 ...

  6. 文件上传到tomcat服务器 commons-fileupload的详细介绍与使用

    三个类:DiskFileUpload.FileItem和FileUploadException.这三个类全部位于org.apache.commons.fileupload包中. 首先需要说明一下for ...

  7. 评论alpha发布以及PSP

    讲解顺序: 1.  俄罗斯方块   武志远 俄罗斯方块有自己新颖的玩法加在里面 ,可以进行游戏,界面友好但不美观,与传统玩法相比增加了经验值,这是一个很好的创意,游戏运行也很流畅,并找到两名同学现场体 ...

  8. [转]string和stringstream用法总结

    转自:http://blog.csdn.net/xw20084898/article/details/21939811 作者:xw20084898 一.string string 是 C++ 提供的字 ...

  9. js中常见算法

    一.面试80%都要问的数组去重 数组去重的方式有多种,其实面试中主要是想靠对对象的理解.还记得我第一次去面试的时候,去重的时候用了2个for循环. //1循环一次 var arr1 = [1,2,3, ...

  10. java poi给sheet表格中的某个单元格添加批注

    Label l = , , "A cell with a comment"); WritableCellFeatures cellFeatures = new WritableCe ...