1. Sigmoid Function

In Logisttic Regression, the hypothesis is defined as:

where function g is the sigmoid function. The sigmoid function is defined as:

2.Cost function and gradient

The cost function in logistic regression is:

the gradient of the cost is a vector of the same length as θ  where jth element(for j=0,1,...,n) is defined as follows:

3. Regularized Cost function and gradient

Recall that the regularized cost function in logistic regression is:

The gradient of the cost function is a vector where the jth element is defined as follows:

for j=0:

for j>=1:

Here are the code files:

ex2_data1.txt

34.62365962451697,78.0246928153624,0
30.28671076822607,43.89499752400101,0
35.84740876993872,72.90219802708364,0
60.18259938620976,86.30855209546826,1
79.0327360507101,75.3443764369103,1
45.08327747668339,56.3163717815305,0
61.10666453684766,96.51142588489624,1
75.02474556738889,46.55401354116538,1
76.09878670226257,87.42056971926803,1
84.43281996120035,43.53339331072109,1
95.86155507093572,38.22527805795094,0
75.01365838958247,30.60326323428011,0
82.30705337399482,76.48196330235604,1
69.36458875970939,97.71869196188608,1
39.53833914367223,76.03681085115882,0
53.9710521485623,89.20735013750205,1
69.07014406283025,52.74046973016765,1
67.94685547711617,46.67857410673128,0
70.66150955499435,92.92713789364831,1
76.97878372747498,47.57596364975532,1
67.37202754570876,42.83843832029179,0
89.67677575072079,65.79936592745237,1
50.534788289883,48.85581152764205,0
34.21206097786789,44.20952859866288,0
77.9240914545704,68.9723599933059,1
62.27101367004632,69.95445795447587,1
80.1901807509566,44.82162893218353,1
93.114388797442,38.80067033713209,0
61.83020602312595,50.25610789244621,0
38.78580379679423,64.99568095539578,0
61.379289447425,72.80788731317097,1
85.40451939411645,57.05198397627122,1
52.10797973193984,63.12762376881715,0
52.04540476831827,69.43286012045222,1
40.23689373545111,71.16774802184875,0
54.63510555424817,52.21388588061123,0
33.91550010906887,98.86943574220611,0
64.17698887494485,80.90806058670817,1
74.78925295941542,41.57341522824434,0
34.1836400264419,75.2377203360134,0
83.90239366249155,56.30804621605327,1
51.54772026906181,46.85629026349976,0
94.44336776917852,65.56892160559052,1
82.36875375713919,40.61825515970618,0
51.04775177128865,45.82270145776001,0
62.22267576120188,52.06099194836679,0
77.19303492601364,70.45820000180959,1
97.77159928000232,86.7278223300282,1
62.07306379667647,96.76882412413983,1
91.56497449807442,88.69629254546599,1
79.94481794066932,74.16311935043758,1
99.2725269292572,60.99903099844988,1
90.54671411399852,43.39060180650027,1
34.52451385320009,60.39634245837173,0
50.2864961189907,49.80453881323059,0
49.58667721632031,59.80895099453265,0
97.64563396007767,68.86157272420604,1
32.57720016809309,95.59854761387875,0
74.24869136721598,69.82457122657193,1
71.79646205863379,78.45356224515052,1
75.3956114656803,85.75993667331619,1
35.28611281526193,47.02051394723416,0
56.25381749711624,39.26147251058019,0
30.05882244669796,49.59297386723685,0
44.66826172480893,66.45008614558913,0
66.56089447242954,41.09209807936973,0
40.45755098375164,97.53518548909936,1
49.07256321908844,51.88321182073966,0
80.27957401466998,92.11606081344084,1
66.74671856944039,60.99139402740988,1
32.72283304060323,43.30717306430063,0
64.0393204150601,78.03168802018232,1
72.34649422579923,96.22759296761404,1
60.45788573918959,73.09499809758037,1
58.84095621726802,75.85844831279042,1
99.82785779692128,72.36925193383885,1
47.26426910848174,88.47586499559782,1
50.45815980285988,75.80985952982456,1
60.45555629271532,42.50840943572217,0
82.22666157785568,42.71987853716458,0
88.9138964166533,69.80378889835472,1
94.83450672430196,45.69430680250754,1
67.31925746917527,66.58935317747915,1
57.23870631569862,59.51428198012956,1
80.36675600171273,90.96014789746954,1
68.46852178591112,85.59430710452014,1
42.0754545384731,78.84478600148043,0
75.47770200533905,90.42453899753964,1
78.63542434898018,96.64742716885644,1
52.34800398794107,60.76950525602592,0
94.09433112516793,77.15910509073893,1
90.44855097096364,87.50879176484702,1
55.48216114069585,35.57070347228866,0
74.49269241843041,84.84513684930135,1
89.84580670720979,45.35828361091658,1
83.48916274498238,48.38028579728175,1
42.2617008099817,87.10385094025457,1
99.31500880510394,68.77540947206617,1
55.34001756003703,64.9319380069486,1
74.77589300092767,89.52981289513276,1

ex2.m

 %% Machine Learning Online Class - Exercise 2: Logistic Regression
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the logistic
% regression exercise. You will need to complete the following functions
% in this exericse:
%
% sigmoid.m
% costFunction.m
% predict.m
% costFunctionReg.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
% %% Initialization
clear ; close all; clc %% Load Data
% The first two columns contains the exam scores and the third column
% contains the label. data = load('ex2data1.txt');
X = data(:, [1, 2]); y = data(:, 3); %% ==================== Part 1: Plotting ====================
% We start the exercise by first plotting the data to understand the
% the problem we are working with. fprintf(['Plotting data with + indicating (y = 1) examples and o ' ...
'indicating (y = 0) examples.\n']); plotData(X, y); % Put some labels
hold on;
% Labels and Legend
xlabel('Exam 1 score')
ylabel('Exam 2 score') % Specified in plot order
legend('Admitted', 'Not admitted')
hold off; fprintf('\nProgram paused. Press enter to continue.\n');
pause; %% ============ Part 2: Compute Cost and Gradient ============
% In this part of the exercise, you will implement the cost and gradient
% for logistic regression. You neeed to complete the code in
% costFunction.m % Setup the data matrix appropriately, and add ones for the intercept term
[m, n] = size(X); % Add intercept term to x and X_test
X = [ones(m, 1) X]; % Initialize fitting parameters
initial_theta = zeros(n + 1, 1); % Compute and display initial cost and gradient
[cost, grad] = costFunction(initial_theta, X, y); fprintf('Cost at initial theta (zeros): %f\n', cost);
fprintf('Gradient at initial theta (zeros): \n');
fprintf(' %f \n', grad); fprintf('\nProgram paused. Press enter to continue.\n');
pause; %% ============= Part 3: Optimizing using fminunc =============
% In this exercise, you will use a built-in function (fminunc) to find the
% optimal parameters theta. % Set options for fminunc
options = optimset('GradObj', 'on', 'MaxIter', 400); % Run fminunc to obtain the optimal theta
% This function will return theta and the cost
[theta, cost] = ...
fminunc(@(t)(costFunction(t, X, y)), initial_theta, options); % Print theta to screen
fprintf('Cost at theta found by fminunc: %f\n', cost);
fprintf('theta: \n');
fprintf(' %f \n', theta); % Plot Boundary
plotDecisionBoundary(theta, X, y); % Put some labels
hold on;
% Labels and Legend
xlabel('Exam 1 score')
ylabel('Exam 2 score') % Specified in plot order
legend('Admitted', 'Not admitted')
hold off; fprintf('\nProgram paused. Press enter to continue.\n');
pause; %% ============== Part 4: Predict and Accuracies ==============
% After learning the parameters, you'll like to use it to predict the outcomes
% on unseen data. In this part, you will use the logistic regression model
% to predict the probability that a student with score 45 on exam 1 and
% score 85 on exam 2 will be admitted.
%
% Furthermore, you will compute the training and test set accuracies of
% our model.
%
% Your task is to complete the code in predict.m % Predict probability for a student with score 45 on exam 1
% and score 85 on exam 2 prob = sigmoid([1 45 85] * theta);
fprintf(['For a student with scores 45 and 85, we predict an admission ' ...
'probability of %f\n\n'], prob); % Compute accuracy on our training set
p = predict(theta, X); fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100); fprintf('\nProgram paused. Press enter to continue.\n');
pause;

sigmoid.m

 function g = sigmoid(z)
%SIGMOID Compute sigmoid functoon
% J = SIGMOID(z) computes the sigmoid of z. % You need to return the following variables correctly
g = zeros(size(z)); % ====================== YOUR CODE HERE ======================
% Instructions: Compute the sigmoid of each value of z (z can be a matrix,
% vector or scalar). g = 1./(1+exp(-z)); % ============================================================= end

costFunction.m

 function [J, grad] = costFunction(theta, X, y)
%COSTFUNCTION Compute cost and gradient for logistic regression
% J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
% parameter for logistic regression and the gradient of the cost
% w.r.t. to the parameters. % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
J = 0;
grad = zeros(size(theta)); % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Note: grad should have the same dimensions as theta
%
hx = sigmoid(X*theta); % m x 1
J = -1/m*(y'*log(hx)+((1-y)'*log(1-hx)));
grad = 1/m*X'*(hx-y); % ============================================================= end

predict.m

 function p = predict(theta, X)
%PREDICT Predict whether the label is 0 or 1 using learned logistic
%regression parameters theta
% p = PREDICT(theta, X) computes the predictions for X using a
% threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1) m = size(X, 1); % Number of training examples % You need to return the following variables correctly
p = zeros(m, 1); % ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned logistic regression parameters.
% You should set p to a vector of 0's and 1's
% p = sigmoid(X*theta)>=0.5; % ========================================================================= end

costFunctionReg.m

 function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters. % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
J = 0;
grad = zeros(size(theta)); % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
hx = sigmoid(X*theta);
reg = lambda/(2*m)*sum(theta(2:size(theta),:).^2);
J = -1/m*(y'*log(hx)+(1-y)'*log(1-hx)) + reg;
theta(1) = 0;
grad = 1/m*X'*(hx-y)+lambda/m*theta; % ============================================================= end

CheeseZH: Stanford University: Machine Learning Ex2:Logistic Regression的更多相关文章

  1. CheeseZH: Stanford University: Machine Learning Ex1:Linear Regression

    (1) How to comput the Cost function in Univirate/Multivariate Linear Regression; (2) How to comput t ...

  2. CheeseZH: Stanford University: Machine Learning Ex3: Multiclass Logistic Regression and Neural Network Prediction

    Handwritten digits recognition (0-9) Multi-class Logistic Regression 1. Vectorizing Logistic Regress ...

  3. CheeseZH: Stanford University: Machine Learning Ex5:Regularized Linear Regression and Bias v.s. Variance

    源码:https://github.com/cheesezhe/Coursera-Machine-Learning-Exercise/tree/master/ex5 Introduction: In ...

  4. CheeseZH: Stanford University: Machine Learning Ex4:Training Neural Network(Backpropagation Algorithm)

    1. Feedforward and cost function; 2.Regularized cost function: 3.Sigmoid gradient The gradient for t ...

  5. machine learning 之 logistic regression

    整理自Adrew Ng 的 machine learning课程week3 目录: 二分类问题 模型表示 decision boundary 损失函数 多分类问题 过拟合问题和正则化 什么是过拟合 如 ...

  6. Machine Learning/Introducing Logistic Function

    Machine Learning/Introducing Logistic Function 打算写点关于Machine Learning的东西, 正好也在cnBlogs上新开了这个博客, 也就更新在 ...

  7. Stanford CS229 Machine Learning by Andrew Ng

    CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...

  8. Machine Learning #Lab1# Linear Regression

    Machine Learning Lab1 打算把Andrew Ng教授的#Machine Learning#相关的6个实验一一实现了贴出来- 预计时间长度战线会拉的比較长(毕竟JOS的7级浮屠还没搞 ...

  9. 【Coursera - machine learning】 Linear regression with one variable-quiz

    Question 1 Consider the problem of predicting how well a student does in her second year of college/ ...

随机推荐

  1. flex sqlite 操作blog 二进制数据

    1,              通常的操作方式: 首先我们建立表:CREATE TABLE "pages" ("id" varchar, "data& ...

  2. Trie树理解

    前言 Trie树又称单词查找树,字典树,是哈希树的变种: 优点在于:最大限度地减少无谓的字符串比较,查询效率比哈希高: 缺点在于:空间消耗很大: 性质 其基本性质可以归纳为: 跟结点不包括字符,除跟结 ...

  3. java值和地址值传递、字符串常量池的理解

    #java值和地址值传递的理解: - 基本数据类型和基本数据类型的封装类都是:值传递    * 形式参数的改变不会影响实际参数的改变(相当于将值复制一份传递给形参,自身没做任何改变)   - 引用数据 ...

  4. Any way to start Google Chrome in headless mode?

    Any way to start Google Chrome in headless mode? - Stack Overflow Any way to start Google Chrome in ...

  5. XDM、GDM和KDM

    XDM.GDM.KDM是三种X Window的显示管理器 (1)XDM(默认的X Window System Display Manager)(2)GDM(gnome提供的Display Manage ...

  6. 在Powerdesigner中创建概念数据模型

    点击菜单“File”---->“New Model” 点击[OK]按钮后,将进入如下的画面 系统将出现一个工具栏如下,用于在设计面板中设计模型

  7. 获取applicationContext对象的方法

    方法一:在初始化时保存ApplicationContext对象 代码: ApplicationContext ac = new FileSystemXmlApplicationContext(&quo ...

  8. Android开发FAQ集锦!!!

    .Android SDK应该从什么地方下载?为什么(http://developer.Android.com/ )经常上不上去? 答:谷歌官网的 (http://developer.Android.c ...

  9. 使用 kubeadm 搭建 kubernetes1.10 集群

    PS:所有节点安装之前记得先把镜像准备好,否者将无法启动,也不报错. $ cat /etc/hosts192.168.11.1 master192.168.11.2 node 禁用防火墙: $ sys ...

  10. WhyDemo: 画线圈LineFlower

    画线圈LineFlower 刚发过画线圈的屏保程序,现在发一下它的可编辑版本.可以对线圈的相关参数进行设置.      小时候玩过一种画线圈的玩具,将一个圆形齿轮在一个大圈里转,会画出各种图形来.这个 ...