2017 Bangladesh National High School Programming Contest ( National Round, Senior Group ), NHSPC 2017 题解
【题目链接】
A. Charm Is Not Always Enough
模拟一下就可以了。
#include <bits/stdc++.h>
using namespace std; int T; int main() {
scanf("%d", &T);
while(T --) {
int n, m;
long long ans = 0;
scanf("%d%d", &n, &m);
while(n --) {
int x;
scanf("%d", &x);
x = x % m;
if(x == 0) continue;
ans = ans + 1LL * (m - x);
}
cout << ans << endl;
}
return 0;
}
B. Max and Alexis Plan to Conquer the World
打表。
设比例为$h$,可以发现$x$天之后的数量等于$n$乘上一个关于$h$的某种前缀和。
$h$只有$100$种,可以把每一种的前缀和都计算好,每组数据二分一下即可。
#include <bits/stdc++.h>
using namespace std; double h[105][4500]; void init() {
for(int i = 1; i <= 100; i ++) {
h[i][0] = 1.0;
for(int t = 1; t < 4500; t ++) {
h[i][t] = h[i][t - 1] + h[i][t - 1] * i / 100;
}
//printf("%lf\n", h[i][4499]);
}
} int main() {
init();
int T ;
scanf("%d", &T);
int cas = 1;
while(T -- > 0) {
double n;
scanf("%lf", &n);
int r;
scanf("%d", &r);
double p;
scanf("%lf", &p); int L = 0, R = 4499;
int ans = 0;
while(L <= R) {
int mid = (L + R) / 2;
if(n * h[r][mid] >= p) {
ans = mid;
R = mid - 1;
} else {
L = mid + 1;
}
}
printf("Case %d: %d\n", cas, ans);
cas ++;
}
}
C. Being Common is Too Mainstream
质因数分解,暴力。
#include <bits/stdc++.h>
using namespace std; //****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=20;//随机算法判定次数,S越大,判错概率越小 //计算 (a*b)%c. a,b都是long long的数,直接相乘可能溢出的
// a,b,c <2^63
long long mult_mod(long long a,long long b,long long c)
{
a%=c;
b%=c;
long long ret=0;
while(b)
{
if(b&1){ret+=a;ret%=c;}
a<<=1;
if(a>=c)a%=c;
b>>=1;
}
return ret;
} //计算 x^n %c
long long pow_mod(long long x,long long n,long long mod)//x^n%c
{
if(n==1)return x%mod;
x%=mod;
long long tmp=x;
long long ret=1;
while(n)
{
if(n&1) ret=mult_mod(ret,tmp,mod);
tmp=mult_mod(tmp,tmp,mod);
n>>=1;
}
return ret;
} //以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
long long ret=pow_mod(a,x,n);
long long last=ret;
for(int i=1;i<=t;i++)
{
ret=mult_mod(ret,ret,n);
if(ret==1&&last!=1&&last!=n-1) return true;//合数
last=ret;
}
if(ret!=1) return true;
return false;
} // Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false; bool Miller_Rabin(long long n)
{
if(n<2)return false;
if(n==2)return true;
if((n&1)==0) return false;//偶数
long long x=n-1;
long long t=0;
while((x&1)==0){x>>=1;t++;}
for(int i=0;i<S;i++)
{
long long a=rand()%(n-1)+1;//rand()需要stdlib.h头文件
if(check(a,n,x,t))
return false;//合数
}
return true;
} //************************************************
//pollard_rho 算法进行质因数分解
//************************************************
long long factor[100];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始 long long gcd(long long a,long long b)
{
if(a==0)return 1;//???????
if(a<0) return gcd(-a,b);
while(b)
{
long long t=a%b;
a=b;
b=t;
}
return a;
} long long Pollard_rho(long long x,long long c)
{
long long i=1,k=2;
long long x0=rand()%x;
long long y=x0;
while(1)
{
i++;
x0=(mult_mod(x0,x0,x)+c)%x;
long long d=gcd(y-x0,x);
if(d!=1&&d!=x) return d;
if(y==x0) return x;
if(i==k){y=x0;k+=k;}
}
}
//对n进行素因子分解
void findfac(long long n)
{
if(Miller_Rabin(n))//素数
{
factor[tol++]=n;
return;
}
long long p=n;
while(p>=n)p=Pollard_rho(p,rand()%(n-1)+1);
findfac(p);
findfac(n/p);
} const long long mod = 1000000001LL;
const int maxn = 1e5 + 10;
long long a[maxn];
vector<long long> fac[maxn]; bool prime(long long x) {
if(x == 1) return 0;
for(long long i = 2; i * i <= x; i ++) {
if(x % i == 0) return 0;
}
return 1;
} int main() {
srand(time(NULL));
int n;
scanf("%d", &n);
for(int i = 1; i <= n; i ++) {
scanf("%lld", &a[i]);
}
long long ans = 1;
if(n == 1) {
ans = a[1] % mod;
} else if(n == 2) {
long long g = gcd(a[1], a[2]);
for(int i = 1; i <= n; i ++) {
a[i] /= g;
ans = ans * a[i] % mod;
}
} else if(n == 3) {
long long g;
g = gcd(a[1], gcd(a[2], a[3]));
for(int i = 1; i <= n; i ++) {
a[i] /= g;
}
g = gcd(a[1], a[2]);
a[1] /= g;
a[2] /= g;
g = gcd(a[2], a[3]);
a[2] /= g;
a[3] /= g;
g = gcd(a[1], a[3]);
a[1] /= g;
a[3] /= g;
for(int i = 1; i <= n; i ++) {
ans = ans * a[i] % mod;
}
} else if(n <= 1000) {
for(int i = 1; i <= n; i ++) {
if(a[i] == 1) continue;
tol = 0;
findfac(a[i]);
for(int j = 0; j < tol; j ++) {
fac[i].push_back(factor[j]);
}
}
for(int i = 1; i <= n; i ++) {
for(int j = 0; j < fac[i].size(); j ++) {
if(a[i] % fac[i][j]) continue;
int num = 0;
for(int k = 1; k <= n; k ++) {
if(a[k] % fac[i][j] == 0) num ++;
}
if(num < 2) continue;
for(int k = 1; k <= n; k ++) {
if(a[k] % fac[i][j] == 0) {
a[k] /= fac[i][j];
}
}
}
}
for(int i = 1; i <= n; i ++) {
ans = ans * a[i] % mod;
}
} else {
for(long long x = 2; x <= 601; x ++) {
if(!prime(x)) continue;
while(1) {
int num = 0;
for(int i = 1; i <= n; i ++) {
if(a[i] % x == 0) num ++;
}
if(num < 2) break;
for(int i = 1; i <= n; i ++) {
if(a[i] % x == 0) a[i] /= x;
}
}
}
for(int i = 1; i <= n; i ++) {
ans = ans * a[i] % mod;
}
}
printf("%lld\n", ans);
return 0;
} /*
10
1 2 3 4 5 6 7 8 9 10
*/
D. Shaat Chara
对于第$i$堆石头,要使得拿走第$i$堆的若干颗石头变成必胜态,也就是要使得剩下的所有石头异或和为$0$。
#include <bits/stdc++.h>
using namespace std; const long long mod = 1000000007LL;
const int maxn = 2e5 + 10;
int T, n;
int a[maxn]; int main() {
scanf("%d", &T);
int cas = 1;
while(T --) {
scanf("%d", &n);
int Xor = 0;
for(int i = 1; i <= n; i ++) {
scanf("%d", &a[i]);
Xor = Xor ^ a[i];
}
int ans = 0;
for(int i = 1; i <= n; i ++) {
Xor = Xor ^ a[i];
if(Xor < a[i]) ans ++;
Xor = Xor ^ a[i];
}
printf("Case %d: %d\n", cas ++, ans);
}
return 0;
}
E. Just One Swap
如果每个数字都不一样,答案就是$C_n^2$。
否则,相同的数字交换有$1$种情况,再计算不同数字交换的方案数。
#include <bits/stdc++.h>
using namespace std; const int maxn = 1e5 + 10;
int T;
int a[maxn]; int main() {
scanf("%d", &T);
while(T --) {
memset(a, 0, sizeof a);
int n;
scanf("%d", &n);
int y = n;
while(n --) {
int x;
scanf("%d", &x);
a[x] ++;
}
int ok = 1;
for(int i = 1; i <= 100000; i ++) {
if(a[i] > 1) ok = 0;
} long long ans = 0;
if(ok) {
ans = 1LL * y * (y - 1) / 2;
} else {
ans = 1LL;
long long sum = 0;
for(int i = 1; i <= 100000; i ++) {
ans = ans + sum * a[i];
sum = sum + a[i];
}
}
printf("%lld\n", ans);
}
return 0;
}
F. Halum and Candies
贪心,二分。
这题最直观的做法是每次将最大的$k$个数字减$1$,直到不能操作为止,但是在题目的数据规模下容易超时。
较为容易的写法是二分答案+验证,假设二分到$x$个人,只要看$\sum\limits_{i = 1}^n {\min (a[i],x)}$和$x*k$的大小关系即可。
#include <bits/stdc++.h>
using namespace std; int T, n, k;
const int maxn = 1e5 + 10;
long long a[maxn]; int check(long long x) {
long long p = 0;
for(int i = 1; i <= n; i ++) {
p = p + min(x, a[i]);
}
if(p >= x * k) return 1;
return 0;
} int main() {
int cas = 1;
scanf("%d", &T);
while(T --) {
scanf("%d%d", &n, &k);
for(int i = 1; i <= n; i ++) {
scanf("%lld", &a[i]);
}
long long L = 0;
long long R = 1e12;
long long ans = 0;
while(L <= R) {
long long mid = (L + R) / 2;
if(check(mid)) ans = mid, L = mid + 1;
else R = mid - 1;
}
printf("Case %d: %lld\n", cas ++, ans);
}
return 0;
} /*
3
3 3
1 2 3
3 1
1 2 3
3 2
3 2 4
*/
G. XOR 'em all!
线段树。
每个节点存储每一种$1$的个数的最小的位置,以及转换后的即可。
#include <bits/stdc++.h>
using namespace std; const int maxn = 1e6 + 10;
int T, n, q;
int a[maxn], cnt[2 * maxn];
int s[maxn * 4][2][25];
int p[maxn * 4], f[maxn * 4];
int ans, B, v; int lowbit(int x) {
return x & (-x);
} void init() {
for(int i = 1; i < (1 << 20); i ++) {
cnt[i] = cnt[i - lowbit(i)] + 1;
}
} void pushUp(int rt) {
for(int i = 0; i < 21; i ++) {
s[rt][0][i] = min(s[2 * rt][p[2 * rt]][i],
s[2 * rt + 1][p[2 * rt + 1]][i]);
s[rt][1][i] = min(s[2 * rt][p[2 * rt] ^ 1][i],
s[2 * rt + 1][p[2 * rt + 1] ^ 1][i]);
}
p[rt] = 0;
} void pushDown(int rt) {
if(f[rt] == 0) return;
p[2 * rt] = (p[2 * rt] + f[rt]) % 2;
f[2 * rt] = (f[2 * rt] + f[rt]) % 2;
p[2 * rt + 1] = (p[2 * rt + 1] + f[rt]) % 2;
f[2 * rt + 1] = (f[2 * rt + 1] + f[rt]) % 2;
f[rt] = 0;
} void build(int l, int r, int rt) {
p[rt] = 0;
f[rt] = 0;
if(l == r) {
for(int t = 0; t < 2; t ++) {
for(int i = 0; i < 21; i ++) {
s[rt][t][i] = n + 1;
}
}
s[rt][0][a[l]] = l;
s[rt][1][20 - a[l]] = l;
return;
}
int mid = (l + r) / 2;
build(l, mid, 2 * rt);
build(mid + 1, r, 2 * rt + 1);
pushUp(rt);
} void update(int L, int R, int l, int r, int rt) {
if(L <= l && r <= R) {
p[rt] = (p[rt] + 1) % 2;
f[rt] = (f[rt] + 1) % 2;
return;
}
pushDown(rt);
int mid = (l + r) / 2;
if(L <= mid) update(L, R, l, mid, 2 * rt);
if(R > mid) update(L, R, mid + 1, r, 2 * rt + 1);
pushUp(rt);
} void query(int L, int R, int l, int r, int rt) {
if(L <= l && r <= R) {
for(int i = 0; i < 21; i ++) {
if(s[rt][p[rt]][i] > n) continue;
if(abs(i - v) < B) {
B = abs(i - v);
ans = s[rt][p[rt]][i];
} else if(abs(i - v) == B) {
ans = min(ans, s[rt][p[rt]][i]);
}
}
return;
}
pushDown(rt);
int mid = (l + r) / 2;
if(L <= mid) query(L, R, l, mid, 2 * rt);
if(R > mid) query(L, R, mid + 1, r, 2 * rt + 1);
pushUp(rt);
} int main() {
init();
scanf("%d", &T);
int cas = 1;
while(T --) {
printf("Case %d:\n", cas ++);
scanf("%d%d", &n, &q);
for(int i = 1; i <= n; i ++) {
scanf("%d", &a[i]);
a[i] = cnt[a[i]];
}
build(1, n, 1);
while(q --) {
int op, l, r;
scanf("%d%d%d", &op, &l, &r);
if(op == 1) {
scanf("%d", &v);
v = cnt[v];
B = 100;
ans = n + 1;
query(l, r, 1, n, 1);
printf("%d\n", ans);
} else {
update(l, r, 1, n, 1);
}
}
}
return 0;
} /*
1
10 9
47810 337106 289217 728190 763968 210307 934334 929186 401808 365768
2 8 10
1 2 10 611293
2 2 4
1 1 8 422298
2 6 8
2 2 10
1 5 6 180197
2 7 8
1 4 8 712158
*/
H. Simple Path
树形$dp$。
注意点:这题数据有问题,题面上说每条边都是从$u$到$v$的,但事实上不是。
#include <bits/stdc++.h>
using namespace std; const long long mod = 1000000007LL;
const int maxn = 4e5 + 10;
int T;
int h[maxn];
int v[maxn];
long long w[maxn];
int nx[maxn];
int n;
int sz[maxn];
long long ans;
int cnt;
int f[maxn]; void add(int a, int b, long long c) {
v[cnt] = b;
w[cnt] = c;
nx[cnt] = h[a];
h[a] = cnt ++;
} void SZ(int x) {
sz[x] = 1;
f[x] = 1;
for(int i = h[x]; i != -1; i = nx[i]) {
if(!f[v[i]]) {
SZ(v[i]);
sz[x] += sz[v[i]];
}
}
} void DP(int x, long long sum, int dep) {
f[x] = 1;
for(int i = h[x]; i != -1; i = nx[i]) {
if(f[v[i]]) continue;
// printf(" %d -> %d \n", x, v[i]);
long long A = 1LL * sz[v[i]] * sum % mod;
long long B = 1LL * sz[v[i]] * sz[v[i]] % mod;
B = 1LL * B * dep % mod;
long long C = (A - B + mod) % mod;
C = 1LL * C * w[i] % mod;
// cout << x << " debug " << C << endl;
ans = (ans + C) % mod;
long long G = 1LL * sz[v[i]];
G = (sum + G) % mod;
DP(v[i], G, dep + 1);
} //printf("debug %d %lld\n", x, dp[x]);
} int main() {
scanf("%d", &T);
int cas = 1;
while(T --) {
scanf("%d", &n);
cnt = 0;
for(int i = 1; i <= n; i ++) {
h[i] = -1;
sz[i] = 0;
f[i] = 0;
}
for(int i = 1; i < n; i ++) {
int a, b;
long long c;
scanf("%d%d%lld", &a, &b, &c);
add(a, b, c);
add(b, a, c);
}
SZ(1);
for(int i = 1; i <= n; i ++) {
if(sz[i] <= 0) while(1) {}
}
for(int i = 1; i <= n; i ++) {
f[i] = 0;
}
ans = 0;
DP(1, sz[1], 1);
printf("Case %d: %lld\n", cas ++, ans);
}
return 0;
} /*
2
7
1 2 3
1 3 2
2 4 1
2 5 4
3 6 6
3 7 8 6
1 2 3
1 3 2
1 4 4
3 5 7
3 6 1
*/
2017 Bangladesh National High School Programming Contest ( National Round, Senior Group ), NHSPC 2017 题解的更多相关文章
- Codeforces Gym101606 A.Alien Sunset (2017 United Kingdom and Ireland Programming Contest (UKIEPC 2017))
2017 United Kingdom and Ireland Programming Contest (UKIEPC 2017) 寒假第一次组队训练赛,和学长一起训练,题目难度是3颗星,我和猪队友写 ...
- 2017 United Kingdom and Ireland Programming Contest (UKIEPC 2017)
A. Alien Sunset 暴力枚举答案即可. #include<cstdio> int n,i,mx; struct P{ int h,r,t; bool night(int x){ ...
- 2017, X Samara Regional Intercollegiate Programming Contest 题解
[题目链接] A - Streets of Working Lanterns - 2 首先将每一个括号匹配串进行一次缩减,即串内能匹配掉的就匹配掉,每个串会变成连续的$y$个右括号+连续$z$个左括号 ...
- 2019.04.11 第四次训练 【 2017 United Kingdom and Ireland Programming Contest】
题目链接: https://codeforces.com/gym/101606 A: ✅ B: C: ✅ D: ✅ https://blog.csdn.net/Cassie_zkq/article/ ...
- 2017 Wuhan University Programming Contest (Online Round) Lost in WHU 矩阵快速幂 一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开。
/** 题目:Lost in WHU 链接:https://oj.ejq.me/problem/26 题意:一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开. ...
- 2017 Wuhan University Programming Contest (Online Round) C. Divide by Six 分析+模拟
/** 题目:C. Divide by Six 链接:https://oj.ejq.me/problem/24 题意:给定一个数,这个数位数达到1e5,可能存在前导0.问为了使这个数是6的倍数,且没有 ...
- 2017 Wuhan University Programming Contest (Online Round) B Color 树形dp求染色方法数
/** 题目:Color 链接:https://oj.ejq.me/problem/23 题意:给定一颗树,将树上的点最多染成m种颜色,有些节点不可以染成某些颜色.相邻节点颜色不同.求染色方法数. 思 ...
- [寒假集训第一场]gym101606 2017 United Kingdom and Ireland Programming Contest (UKIEPC 2017)
3星场 难度在于英文题面太难读懂了QAQ 看样例猜题意的我 博客园的c++主题真丑 A Alien Sunset \(description\) 有\(n\)个星球,每个星球自转时间不一样,所以一天的 ...
- Codeforces Gym101606 C.Cued In (2017 United Kingdom and Ireland Programming Contest (UKIEPC 2017))
C Cued In 这个题是打球的.都忘了写的什么了... 代码: 1 #include<iostream> 2 #include<cstring> 3 #include< ...
随机推荐
- UNDERSTANDING THE GAUSSIAN DISTRIBUTION
UNDERSTANDING THE GAUSSIAN DISTRIBUTION Randomness is so present in our reality that we are used to ...
- IntelliJ IDEA连接cvs超时Error refreshing view: Timeout while trying to connect to host
在使用IntelliJ IDEA连接cvs的时候,有时会报超时错误: Error refreshing view: Timeout while trying to connect to host: 1 ...
- 退役 AFO
noi滚粗了 D类没学校要 回去高考 此博客停止更新 此文章可能会继续更新 看心情 [upd 2017.11.13] 看完今年noip log级别数据结构终于出现辣! 看来noip以后又多了一大块考点 ...
- ubuntu安装Android Studio开发环境
1.下载 https://developer.android.com/studio/ 2.解压文件,将文件夹copy到/opt/ 3.进入/opt/android-studio/bin,运行./stu ...
- springboot集成mybatis环境搭建以及实现快速开发微服务商品模块基本的增删改查!
之前学习了springboot和mybatis3的一些新特性,初步体会了springboot的强大(真的好快,,,,,),最近趁着复习,参考着以前学习的教程,动手写了一个springboot实战的小例 ...
- 【洛谷】P1445 没占到1444的愤怒
继续洛谷刷水日常,突然遇到一道不是很水的题目…… https://www.luogu.org/problem/show?pid=1445 题意:给定n(1<=n<=1000000),求方程 ...
- SQL 存储过程分页
CREATE PROC p_Team_GetTemaList @pageindex INT , @pagesize INT , @keywords VARCHAR(200) , --模糊查询 名称 标 ...
- bzoj 1034 泡泡堂BNB
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1034 题解: 很明显的贪心,读过田忌赛马的典故就很容易能想出来,分成三种情况讨论: < ...
- java基础24 线程、多线程及线程的生命周期(Thread)
1.1.进程 正在执行的程序称作为一个进程.进程负责了内存空间的划分 疑问1:windows电脑称之为多任务的操作系统,那么Windows是同时运行多个应用程序呢? 从宏观的角度:windows确实在 ...
- CF1030A 【In Search of an Easy Problem】
题目巨简单,主要是给大家翻译一下 给n个数,其中存在1就输出HARD,否则输出EASY,不区分大小写 #include<iostream> #include<cstdio> u ...