题面

题解

首先我们需要看懂题目

然后我们需要发现一个结论

只要有一个节点的权值确定,那么整棵树的权值就确定了

就像这样:(图片来源于网络,侵删)

然后我们根据这张图片,可以设\(f[i] = a[i] \cdot \prod_f \mathrm{son}[f]\)

其中\(f\)是\(i\)的祖先,\(\mathrm{son}[f]\)表示\(f\)的子节点的个数,\(a[i]\)表示\(i\)的权值

于是我们可以用显然法证明当\(f[i] = f[j]\)时,\(i\)和\(j\)的权值肯定在一种方案中都不用修改

于是算出最多有多少点的\(f\)值相等

然后你愉快地打了上去,oho了

\(f[]\)会爆long long,于是考虑取对数就可以了

普及公式:\(\log_c a + \log_c b = \log_c (ab)\)

代码

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cctype>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define clear(x, y) memset(x, y, sizeof(x)) inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
} const double eps(1e-8);
const int maxn(500010);
struct edge { int next, to; } e[maxn];
int head[maxn], e_num, n, a[maxn], deg[maxn];
double f[maxn]; inline void add_edge(int from, int to)
{
e[++e_num] = (edge) {head[from], to};
head[from] = e_num;
} void dfs(int x, double s)
{
f[x] = s + log(a[x]);
for(RG int i = head[x]; i; i = e[i].next)
dfs(e[i].to, s + log(deg[x]));
} int main()
{
n = read();
for(RG int i = 1; i <= n; i++) a[i] = read();
for(RG int i = 1, a, b; i < n; i++)
a = read(), b = read(), ++deg[a], add_edge(a, b);
dfs(1, 0); std::sort(f + 1, f + n + 1); int ans = 1;
for(RG int i = 2, cnt = 1; i <= n; i++)
{
if(f[i] - f[i - 1] <= eps) ans = std::max(ans, ++cnt);
else cnt = 1;
}
printf("%d\n", n - ans);
return 0;
}

【HNOI2014】米特运输的更多相关文章

  1. BZOJ_3573_[Hnoi2014]米特运输_树形DP+hash

    BZOJ_3573_[Hnoi2014]米特运输_树形DP+hash 题意: 给你一棵树每个点有一个权值,要求修改最少的权值,使得每个节点的权值等于其儿子的权值和且儿子的权值都相等. 分析: 首先我们 ...

  2. 洛谷 P3237 [HNOI2014]米特运输 解题报告

    P3237 [HNOI2014]米特运输 题目描述 米特是\(D\)星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题. \(D\)星上有 ...

  3. bzoj 3573: [Hnoi2014]米特运输

    3573: [Hnoi2014]米特运输 Description 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题.    D星 ...

  4. 【bzoj3573】[HNOI2014]米特运输

    题目描述 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题.D星上有N个城市,我们将其顺序编号为1到N,1号城市为首都.这N个城 ...

  5. 3573: [Hnoi2014]米特运输 - BZOJ

    Description米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题.    D星上有N个城市,我们将其顺序编号为1到N,1号 ...

  6. BZOJ3573:[HNOI2014]米特运输(树形DP)

    Description 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储 存一直是一个大问题.D星上有N个城市,我们将其顺序编号为1到N,1号城市 ...

  7. 【bzoj3573】[HNOI2014]米特运输 树形dp

    题目描述 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题.D星上有N个城市,我们将其顺序编号为1到N,1号城市为首都.这N个城 ...

  8. BZOJ3573: [Hnoi2014]米特运输(树上乱搞)

    Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1669  Solved: 1031[Submit][Status][Discuss] Descript ...

  9. [luogu3237 HNOI2014] 米特运输 (树形dp)

    传送门 Description 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题. D星上有N个城市,我们将其顺序编号为1到N, ...

  10. 洛谷P3237 [HNOI2014]米特运输(树形dp)

    解题报告 题干 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题. D星上有N个城市,我们将其顺序编号为1到N,1号城市为首都. ...

随机推荐

  1. [翻译] STAlertView

    STAlertView The idea of this component is to improve the readability while using the native UIAlertV ...

  2. QT的时区转换以及使用注意事项

    QDateTime localDate = QDateTime::fromString("2018-12-11 10:40:00", "yyyy-MM-dd hh:mm: ...

  3. windows实现MySQL主从复制

    MySQL的主从复制是通过binlog日志来实现的,主从复制中的“主”指的是MySQL主服务器上的数据库,“从”指的是MySQL从服务器上的数据库,且这种复制是基于数据库级别的,为此从服务器中的数据库 ...

  4. Composer 的简介、安装及使用

    Composer的简介 简单说,Composer 就是一个安装包管理工具,服务于 PHP 生态系统.它包括了两个部分:Composer 和 Packagist. Composer Composer 是 ...

  5. JDBC 连接mysql获取中文时的乱码问题

    前段时间学习JDBC,要连接mysql获取数据.按照老师的样例数据,要存一些名字之类的信息,用的都是英文名,我当时就不太想用英文,就把我室友的名字存了进去,嘿嘿,结果,出问题了. 连接数据库语句: s ...

  6. lsync目录文件实时同步工具

    参考文档:https://vastxiao.github.io/article/2017/09/02/Linux/lsyncd_usage/ 防止连接丢失,已保存至百度网络-郑州-XXXXX 建议首先 ...

  7. 【转载】uWSGI配置翻译

    英文原版: http://uwsgi-docs.readthedocs.io/en/latest/Options.html 转载地址: http://www.cnblogs.com/zhouej/ar ...

  8. 智能指针shared_ptr新特性shared_from_this及weak_ptr

    enable_shared_from_this是一个模板类,定义于头文件<memory>,其原型为: template< class T > class enable_shar ...

  9. tyvj1953 Normal

    题目链接 正解:点分治+$FFT$. 很想吐槽一下$bzoj$,为什么搬了别的$oj$的题还设成权限题.. 首先我们考虑期望的线性性,即考虑每个点的贡献. 显然每个点的贡献就是它在点分树上的深度,所以 ...

  10. 优酷上传SDK解析(Python)

    1.优酷上传 1)调用优酷的sdk完成优酷视频的上传首先需要将实例化YoukuUpload类实例化,传入的参数为(client_id,access_token,文件地址) 实例化时执行__init__ ...