题目:

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

click to show more practice.

More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

思路:

方法一:动态规划, 数组为vec[],设dp[i] 是以vec[i]结尾的子数组的最大和,对于元素vec[i+1], 它有两种选择:a、vec[i+1]接着前面的子数组构成最大和,b、vec[i+1]自己单独构成子数组。则dp[i+1] = max{dp[i]+vec[i+1],  vec[i+1]}

附加:记录左右节点位置

/**
* @param {number[]} nums
* @return {number}
*/
var maxSubArray = function(nums) {
var sum=0,maxsum=-2147483648,begin=0;
for(var i=0,len=nums.length;i<len;i++){
if(sum>=0){
sum=sum+nums[i];
}else{
sum=nums[i];
begin=i;
} if(maxsum<sum){
maxsum=sum;
left=begin;
right=i;
}
} return maxsum;
};

方法二

最简单的就是穷举所有的子数组,然后求和,复杂度是O(n^3)

int maxSum1(vector<int>&vec, int &left, int &right)
{
int maxsum = INT_MIN, sum = ;
for(int i = ; i < vec.size(); i++)
for(int k = i; k < vec.size(); k++)
{
sum = ;
for(int j = i; j <= k; j++)
sum += vec[j];
if(sum > maxsum)
{
maxsum = sum;
left = i;
right = k;
}
}
return maxsum;
}
 

算法三:

上面代码第三重循环做了很多的重复工作,稍稍改进如下,复杂度为O(n^2)

int maxSum2(vector<int>&vec, int &left, int &right)
{
int maxsum = INT_MIN, sum = ;
for(int i = ; i < vec.size(); i++)
{
sum = ;
for(int k = i; k < vec.size(); k++)
{
sum += vec[k];
if(sum > maxsum)
{
maxsum = sum;
left = i;
right = k;
}
}
}
return maxsum;
}
算法四:
分治法, 下面贴上编程之美的解释, 复杂度为O(nlogn)

//求数组vec【start,end】的最大子数组和,最大子数组边界为[left,right]
int maxSum3(vector<int>&vec, const int start, const int end, int &left, int &right)
{
if(start == end)
{
left = start;
right = left;
return vec[start];
}
int middle = start + ((end - start)>>);
int lleft, lright, rleft, rright;
int maxLeft = maxSum3(vec, start, middle, lleft, lright);//左半部分最大和
int maxRight = maxSum3(vec, middle+, end, rleft, rright);//右半部分最大和
int maxLeftBoeder = vec[middle], maxRightBorder = vec[middle+], mleft = middle, mright = middle+;
int tmp = vec[middle];
for(int i = middle-; i >= start; i--)
{
tmp += vec[i];
if(tmp > maxLeftBoeder)
{
maxLeftBoeder = tmp;
mleft = i;
}
}
tmp = vec[middle+];
for(int i = middle+; i <= end; i++)
{
tmp += vec[i];
if(tmp > maxRightBorder)
{
maxRightBorder = tmp;
mright = i;
}
}
int res = max(max(maxLeft, maxRight), maxLeftBoeder+maxRightBorder);
if(res == maxLeft)
{
left = lleft;
right = lright;
}
else if(res == maxLeftBoeder+maxRightBorder)
{
left = mleft;
right = mright;
}
else
{
left = rleft;
right = rright;
}
return res;
}

【数组】Maximum Subarray的更多相关文章

  1. [leetcode53]最长子数组 Maximum Subarray Kadane's算法

    [题目] Given an integer array nums, find the contiguous subarray (containing at least one number) whic ...

  2. LeetCode 53. Maximum Subarray(最大的子数组)

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  3. 动态规划法(八)最大子数组问题(maximum subarray problem)

    问题简介   本文将介绍计算机算法中的经典问题--最大子数组问题(maximum subarray problem).所谓的最大子数组问题,指的是:给定一个数组A,寻找A的和最大的非空连续子数组.比如 ...

  4. 53. Maximum Subarray最大求和子数组12 3(dp)

    [抄题]: Find the contiguous subarray within an array (containing at least one number) which has the la ...

  5. [LintCode] Maximum Subarray 最大子数组

    Given an array of integers, find a contiguous subarray which has the largest sum. Notice The subarra ...

  6. 【leetcode】Maximum Subarray (53)

    1.   Maximum Subarray (#53) Find the contiguous subarray within an array (containing at least one nu ...

  7. LeetCode: Maximum Product Subarray && Maximum Subarray &子序列相关

    Maximum Product Subarray Title: Find the contiguous subarray within an array (containing at least on ...

  8. leetCode 53.Maximum Subarray (子数组的最大和) 解题思路方法

    Maximum Subarray  Find the contiguous subarray within an array (containing at least one number) whic ...

  9. Maximum Subarray / Best Time To Buy And Sell Stock 与 prefixNum

    这两个系列的题目其实是同一套题,可以互相转换. 首先我们定义一个数组: prefixSum (前序和数组) Given nums: [1, 2, -2, 3] prefixSum: [0, 1, 3, ...

  10. Maximum Subarray Sum

    Maximum Subarray Sum 题意 给你一个大小为N的数组和另外一个整数M.你的目标是找到每个子数组的和对M取余数的最大值.子数组是指原数组的任意连续元素的子集. 分析 参考 求出前缀和, ...

随机推荐

  1. spring mvc中的一些注释:@PathVariable @RequestParam等

    请求路径上有个id的变量值,可以通过@PathVariable来获取  @RequestMapping(value = "/page/{id}", method = Request ...

  2. Spring容器中bean的生命周期以及关注spring bean对象的后置处理器:BeanPostProcessor(一个接口)

    Spring IOC 容器对 Bean 的生命周期进行管理的过程: 1.通过构造器或工厂方法创建 Bean 实例 2.为 Bean 的属性设置值和对其他 Bean 的引用 3.将 Bean 实例传递给 ...

  3. delphi存取图片

    1.存图片到数据库 var   PicStream: TMemoryStream; if imgBugPic.Picture.Graphic <> nil then  begin    P ...

  4. 自适应XAML布局经验总结 (四)区域布局设计模式

    本系列对实际项目中的XAML布局场景进行总结,给出了较优化的自适应布局解决方案,希望对大家有所帮助. 下面介绍区域布局设计模式. 7. 头尾模式 页面有时分为顶部栏,中间内容和底部栏三部分.这时可以使 ...

  5. [LeetCode] Binary Tree Maximum Path Sum(最大路径和)

    Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...

  6. Checkpoint--在Tempdb上的特殊性

    由于Checkpoint的目的是为减少数据库恢复时间,而每次实例重启都会创建新的tempdb,而不需要恢复,因此checkpoint在Tempdb上行为与其他用户数据库上略微不同. 1. 系统引发的c ...

  7. C#实现在图片上动态写内容

    之前在项目上遇到这么一个需求,就是要在图片上写内容,而且要求是动态,我所谓的动态就是在图片上写的内容是动态的.网上找了找,很多人实现了网图片上写内容的功能,但是,并没有实现动态.所以在这里把我的解决办 ...

  8. C# winform 窗体应用程序之图片上传Oracle数据库保存字段BLOB

    C# winform 窗体应用程序之图片上传Oracle数据库保存字段BLOB 我用的数据库是Oracle,就目前来看,许多数据库现在都倾向于Oracle数据库,对ORACLE数据库基本的操作也是必须 ...

  9. sql 中如何查询某一列的数据在另一个表中有没有?

    假设表table1,列a,表table2,列bselect a from table1where a not in(select b from table2)

  10. Asp.net MVC4 记录在线用户数及登录时长

    Global.asax.cs文件 public class MvcApplication : System.Web.HttpApplication { /// <summary> /// ...