【数组】Maximum Subarray
题目:
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
思路:
方法一:动态规划, 数组为vec[],设dp[i] 是以vec[i]结尾的子数组的最大和,对于元素vec[i+1], 它有两种选择:a、vec[i+1]接着前面的子数组构成最大和,b、vec[i+1]自己单独构成子数组。则dp[i+1] = max{dp[i]+vec[i+1], vec[i+1]}
附加:记录左右节点位置
/**
* @param {number[]} nums
* @return {number}
*/
var maxSubArray = function(nums) {
var sum=0,maxsum=-2147483648,begin=0;
for(var i=0,len=nums.length;i<len;i++){
if(sum>=0){
sum=sum+nums[i];
}else{
sum=nums[i];
begin=i;
} if(maxsum<sum){
maxsum=sum;
left=begin;
right=i;
}
} return maxsum;
};
方法二:
最简单的就是穷举所有的子数组,然后求和,复杂度是O(n^3)
int maxSum1(vector<int>&vec, int &left, int &right)
{
int maxsum = INT_MIN, sum = ;
for(int i = ; i < vec.size(); i++)
for(int k = i; k < vec.size(); k++)
{
sum = ;
for(int j = i; j <= k; j++)
sum += vec[j];
if(sum > maxsum)
{
maxsum = sum;
left = i;
right = k;
}
}
return maxsum;
}
算法三:
上面代码第三重循环做了很多的重复工作,稍稍改进如下,复杂度为O(n^2)
int maxSum2(vector<int>&vec, int &left, int &right)
{
int maxsum = INT_MIN, sum = ;
for(int i = ; i < vec.size(); i++)
{
sum = ;
for(int k = i; k < vec.size(); k++)
{
sum += vec[k];
if(sum > maxsum)
{
maxsum = sum;
left = i;
right = k;
}
}
}
return maxsum;
}
//求数组vec【start,end】的最大子数组和,最大子数组边界为[left,right]
int maxSum3(vector<int>&vec, const int start, const int end, int &left, int &right)
{
if(start == end)
{
left = start;
right = left;
return vec[start];
}
int middle = start + ((end - start)>>);
int lleft, lright, rleft, rright;
int maxLeft = maxSum3(vec, start, middle, lleft, lright);//左半部分最大和
int maxRight = maxSum3(vec, middle+, end, rleft, rright);//右半部分最大和
int maxLeftBoeder = vec[middle], maxRightBorder = vec[middle+], mleft = middle, mright = middle+;
int tmp = vec[middle];
for(int i = middle-; i >= start; i--)
{
tmp += vec[i];
if(tmp > maxLeftBoeder)
{
maxLeftBoeder = tmp;
mleft = i;
}
}
tmp = vec[middle+];
for(int i = middle+; i <= end; i++)
{
tmp += vec[i];
if(tmp > maxRightBorder)
{
maxRightBorder = tmp;
mright = i;
}
}
int res = max(max(maxLeft, maxRight), maxLeftBoeder+maxRightBorder);
if(res == maxLeft)
{
left = lleft;
right = lright;
}
else if(res == maxLeftBoeder+maxRightBorder)
{
left = mleft;
right = mright;
}
else
{
left = rleft;
right = rright;
}
return res;
}
【数组】Maximum Subarray的更多相关文章
- [leetcode53]最长子数组 Maximum Subarray Kadane's算法
[题目] Given an integer array nums, find the contiguous subarray (containing at least one number) whic ...
- LeetCode 53. Maximum Subarray(最大的子数组)
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- 动态规划法(八)最大子数组问题(maximum subarray problem)
问题简介 本文将介绍计算机算法中的经典问题--最大子数组问题(maximum subarray problem).所谓的最大子数组问题,指的是:给定一个数组A,寻找A的和最大的非空连续子数组.比如 ...
- 53. Maximum Subarray最大求和子数组12 3(dp)
[抄题]: Find the contiguous subarray within an array (containing at least one number) which has the la ...
- [LintCode] Maximum Subarray 最大子数组
Given an array of integers, find a contiguous subarray which has the largest sum. Notice The subarra ...
- 【leetcode】Maximum Subarray (53)
1. Maximum Subarray (#53) Find the contiguous subarray within an array (containing at least one nu ...
- LeetCode: Maximum Product Subarray && Maximum Subarray &子序列相关
Maximum Product Subarray Title: Find the contiguous subarray within an array (containing at least on ...
- leetCode 53.Maximum Subarray (子数组的最大和) 解题思路方法
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) whic ...
- Maximum Subarray / Best Time To Buy And Sell Stock 与 prefixNum
这两个系列的题目其实是同一套题,可以互相转换. 首先我们定义一个数组: prefixSum (前序和数组) Given nums: [1, 2, -2, 3] prefixSum: [0, 1, 3, ...
- Maximum Subarray Sum
Maximum Subarray Sum 题意 给你一个大小为N的数组和另外一个整数M.你的目标是找到每个子数组的和对M取余数的最大值.子数组是指原数组的任意连续元素的子集. 分析 参考 求出前缀和, ...
随机推荐
- spring mvc中的一些注释:@PathVariable @RequestParam等
请求路径上有个id的变量值,可以通过@PathVariable来获取 @RequestMapping(value = "/page/{id}", method = Request ...
- Spring容器中bean的生命周期以及关注spring bean对象的后置处理器:BeanPostProcessor(一个接口)
Spring IOC 容器对 Bean 的生命周期进行管理的过程: 1.通过构造器或工厂方法创建 Bean 实例 2.为 Bean 的属性设置值和对其他 Bean 的引用 3.将 Bean 实例传递给 ...
- delphi存取图片
1.存图片到数据库 var PicStream: TMemoryStream; if imgBugPic.Picture.Graphic <> nil then begin P ...
- 自适应XAML布局经验总结 (四)区域布局设计模式
本系列对实际项目中的XAML布局场景进行总结,给出了较优化的自适应布局解决方案,希望对大家有所帮助. 下面介绍区域布局设计模式. 7. 头尾模式 页面有时分为顶部栏,中间内容和底部栏三部分.这时可以使 ...
- [LeetCode] Binary Tree Maximum Path Sum(最大路径和)
Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...
- Checkpoint--在Tempdb上的特殊性
由于Checkpoint的目的是为减少数据库恢复时间,而每次实例重启都会创建新的tempdb,而不需要恢复,因此checkpoint在Tempdb上行为与其他用户数据库上略微不同. 1. 系统引发的c ...
- C#实现在图片上动态写内容
之前在项目上遇到这么一个需求,就是要在图片上写内容,而且要求是动态,我所谓的动态就是在图片上写的内容是动态的.网上找了找,很多人实现了网图片上写内容的功能,但是,并没有实现动态.所以在这里把我的解决办 ...
- C# winform 窗体应用程序之图片上传Oracle数据库保存字段BLOB
C# winform 窗体应用程序之图片上传Oracle数据库保存字段BLOB 我用的数据库是Oracle,就目前来看,许多数据库现在都倾向于Oracle数据库,对ORACLE数据库基本的操作也是必须 ...
- sql 中如何查询某一列的数据在另一个表中有没有?
假设表table1,列a,表table2,列bselect a from table1where a not in(select b from table2)
- Asp.net MVC4 记录在线用户数及登录时长
Global.asax.cs文件 public class MvcApplication : System.Web.HttpApplication { /// <summary> /// ...