【数组】Maximum Subarray
题目:
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
思路:
方法一:动态规划, 数组为vec[],设dp[i] 是以vec[i]结尾的子数组的最大和,对于元素vec[i+1], 它有两种选择:a、vec[i+1]接着前面的子数组构成最大和,b、vec[i+1]自己单独构成子数组。则dp[i+1] = max{dp[i]+vec[i+1], vec[i+1]}
附加:记录左右节点位置
/**
* @param {number[]} nums
* @return {number}
*/
var maxSubArray = function(nums) {
var sum=0,maxsum=-2147483648,begin=0;
for(var i=0,len=nums.length;i<len;i++){
if(sum>=0){
sum=sum+nums[i];
}else{
sum=nums[i];
begin=i;
} if(maxsum<sum){
maxsum=sum;
left=begin;
right=i;
}
} return maxsum;
};
方法二:
最简单的就是穷举所有的子数组,然后求和,复杂度是O(n^3)
int maxSum1(vector<int>&vec, int &left, int &right)
{
int maxsum = INT_MIN, sum = ;
for(int i = ; i < vec.size(); i++)
for(int k = i; k < vec.size(); k++)
{
sum = ;
for(int j = i; j <= k; j++)
sum += vec[j];
if(sum > maxsum)
{
maxsum = sum;
left = i;
right = k;
}
}
return maxsum;
}
算法三:
上面代码第三重循环做了很多的重复工作,稍稍改进如下,复杂度为O(n^2)
int maxSum2(vector<int>&vec, int &left, int &right)
{
int maxsum = INT_MIN, sum = ;
for(int i = ; i < vec.size(); i++)
{
sum = ;
for(int k = i; k < vec.size(); k++)
{
sum += vec[k];
if(sum > maxsum)
{
maxsum = sum;
left = i;
right = k;
}
}
}
return maxsum;
}
//求数组vec【start,end】的最大子数组和,最大子数组边界为[left,right]
int maxSum3(vector<int>&vec, const int start, const int end, int &left, int &right)
{
if(start == end)
{
left = start;
right = left;
return vec[start];
}
int middle = start + ((end - start)>>);
int lleft, lright, rleft, rright;
int maxLeft = maxSum3(vec, start, middle, lleft, lright);//左半部分最大和
int maxRight = maxSum3(vec, middle+, end, rleft, rright);//右半部分最大和
int maxLeftBoeder = vec[middle], maxRightBorder = vec[middle+], mleft = middle, mright = middle+;
int tmp = vec[middle];
for(int i = middle-; i >= start; i--)
{
tmp += vec[i];
if(tmp > maxLeftBoeder)
{
maxLeftBoeder = tmp;
mleft = i;
}
}
tmp = vec[middle+];
for(int i = middle+; i <= end; i++)
{
tmp += vec[i];
if(tmp > maxRightBorder)
{
maxRightBorder = tmp;
mright = i;
}
}
int res = max(max(maxLeft, maxRight), maxLeftBoeder+maxRightBorder);
if(res == maxLeft)
{
left = lleft;
right = lright;
}
else if(res == maxLeftBoeder+maxRightBorder)
{
left = mleft;
right = mright;
}
else
{
left = rleft;
right = rright;
}
return res;
}
【数组】Maximum Subarray的更多相关文章
- [leetcode53]最长子数组 Maximum Subarray Kadane's算法
[题目] Given an integer array nums, find the contiguous subarray (containing at least one number) whic ...
- LeetCode 53. Maximum Subarray(最大的子数组)
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- 动态规划法(八)最大子数组问题(maximum subarray problem)
问题简介 本文将介绍计算机算法中的经典问题--最大子数组问题(maximum subarray problem).所谓的最大子数组问题,指的是:给定一个数组A,寻找A的和最大的非空连续子数组.比如 ...
- 53. Maximum Subarray最大求和子数组12 3(dp)
[抄题]: Find the contiguous subarray within an array (containing at least one number) which has the la ...
- [LintCode] Maximum Subarray 最大子数组
Given an array of integers, find a contiguous subarray which has the largest sum. Notice The subarra ...
- 【leetcode】Maximum Subarray (53)
1. Maximum Subarray (#53) Find the contiguous subarray within an array (containing at least one nu ...
- LeetCode: Maximum Product Subarray && Maximum Subarray &子序列相关
Maximum Product Subarray Title: Find the contiguous subarray within an array (containing at least on ...
- leetCode 53.Maximum Subarray (子数组的最大和) 解题思路方法
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) whic ...
- Maximum Subarray / Best Time To Buy And Sell Stock 与 prefixNum
这两个系列的题目其实是同一套题,可以互相转换. 首先我们定义一个数组: prefixSum (前序和数组) Given nums: [1, 2, -2, 3] prefixSum: [0, 1, 3, ...
- Maximum Subarray Sum
Maximum Subarray Sum 题意 给你一个大小为N的数组和另外一个整数M.你的目标是找到每个子数组的和对M取余数的最大值.子数组是指原数组的任意连续元素的子集. 分析 参考 求出前缀和, ...
随机推荐
- Vue 需要使用jsonp解决跨域时,可以使用(vue-jsonp)
1,执行命令 npm install vue-jsonp --save 2.src/main.js中添加: import VueJsonp from 'vue-jsonp' Vue.use(VueJs ...
- Yarn application has already exited with state FINISHED
如果在运行spark-sql时遇到如下这样的错误,可能是因为yarn-site.xml中的配置项yarn.nodemanager.vmem-pmem-ratio值偏小,它的默认值为2.1,可以尝试改大 ...
- hdu 2149
题目 巴什博奕(Bash Game) 巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规 定每次至少取一个,最多取m个.最后取光者得胜. 显然,如果n=m+1,那么由于一 ...
- 安装及使用Eclipse Maven插件的经验
Eclipse Maven插件的站点目前已经迁移到了Eclipse主站上:http://eclipse.org/m2e/ 其安装方法也非常简单,通过Eclipse访问下面的URL:http://dow ...
- [FRAMESET][PHP]Frameset下面使用php-header('location:...') redirect链接
一般,我们的管理后台都是使用frameset来进行布局的,所以如果我们对后台的登录会话时间进行了设定,那么在超过该时间session失效之后,那么我们就必须要在php文件中进行判断处理. 判断会话失效 ...
- WPF 最简单的TextBox水印
最简单的TextBox加水印的方法,但是不具有很强的通用性. 如果你只是使用一次,或者用的不多,偷偷懒可以使用. 因为此方法只需要修改TextBox的Template,而不用重写何任代码. 注意: 1 ...
- [ACM_动态规划] hdu1003 Max Sum [最大连续子串和]
Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum ...
- 设计模式之工厂模式(Factory Pattern)
一.什么是工厂模式? 1.“简单工厂模式”,Simple Factory Pattern 也就是常用的在Factory类中定义静态方法负责new对象的方式. 摘要中提到过“严格地说,这种被称为“简单工 ...
- C# 实现图片压缩
代码: private static ImageCodecInfo GetImageCodecInfo(ImageFormat imageFormat) { ImageCodecInfo[] imag ...
- 673. Number of Longest Increasing Subsequence
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...