已知数列$\{a_n\}$满足:$a_n>0,a_{n+1}+\dfrac{1}{a_n}<2,n\in N^*$.
求证:
(1)$a_{n+2}<a_{n+1}<2 (n\in N^*)$
(2)$a_n>1 (n\in N^*)$


第二题:分析:由题意$\{a_n\}$单调递减又有下界,故有极限,记$\lim\limits_{n\longrightarrow +\infty}a_n=x$
则由$a_{n+1}+\dfrac{1}{a_n}<2$两边取极限得$x+\dfrac{1}{x}\le2$,又由于$x+\dfrac{1}{x}\ge2$故$\lim\limits_{n\longrightarrow +\infty}a_n=1$
由单调递减得$a_n>1$

注:也可以用反证法,提示:关键递推式$\dfrac{1}{a_{n+1}-1}>1+\dfrac{1}{a_n-1}$

MT【159】单调有界有极限的更多相关文章

  1. MT【155】单调有界必有极限

    (清华2017.4.29标准学术能力测试20) 已知数列$\{a_n\}$,其中$a_1=a$,$a_2=b$,$a_{n+2}=a_n-\dfrac 7{a_{n+1}}$,则_______ A.$ ...

  2. Matlab求极限

    matlab求极限(可用来验证度量函数或者隶属度函数)可用来验证是否收敛,取值范围等等. 一.问题来源 搜集聚类资料时,又看到了隶属度函数,没错,就是下面这个,期间作者提到m趋于2是,结果趋于1,我想 ...

  3. python数学第一天【极限存在定理】

    1.基本回忆 2.两边夹定理 推论1. 基本三角函数的极限 2.极限存在定理 单调有界数列必有极限 (1)单调递增有上界数列必有极限 (2)单调递减有下界数列必有极限 推论1: (1+1/n)^n有极 ...

  4. 【2】从零认识中心极限思想-e往无尽

    目录 e往无尽 单调性.有界性 \(e^{-x^2}\)的积分性质 函数列的近似 傅里叶的方案 三角函数系的正交性 傅立叶展开 傅立叶展开式的指数形式 e往无尽 无论是学高数,还是学习数分,我们在讲到 ...

  5. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  6. '"千"第一周学习情况记录

    一周过去了,今天将我这一周的学习内容和主要感想记录与此和大家共同分享,一起进步.我将自己的学习计划命名为"千",因为我喜欢这个字,希望能用此来鼓舞自己不断前进.时间总是很快的,这一 ...

  7. 第五回. $e$ 的引入

    假如你有 $1$ 块钱, 存银行, 利率为 $100\%$, 那么一年后本息和为$$1+1=2.$$ 如果你换种存法, 存半年, 把本息和取出来, 再存半年, 那么一年后本息和为$$\left(1+\ ...

  8. 数学常数e的含义

    转载:   http://www.ruanyifeng.com/blog/2011/07/mathematical_constant_e.html 作者: 阮一峰 日期: 2011年7月 9日 1. ...

  9. 一个形式较精细的Strling公式的证明

    近日整理书稿,在整理至Strling公式处时,发现当时数学老师所讲的是形式比较精细的一种: Strling公式:\(n!=\sqrt{2\pi n}\left(\dfrac{n}{\mathrm{e} ...

随机推荐

  1. [C++]linux下实现ls()函数遍历目录

    转载请注明原创:http://www.cnblogs.com/StartoverX/p/4600794.html 需求:在linux下遍历目录,输出目录中各文件名. 在linux下遍历目录的相关函数有 ...

  2. 【Unity Shader】Shader基础

    目录 Chapter3 Unity Shader 基础 Chapter3 Unity Shader 基础 概述 在Unity需要材质(Material)与Unity Shader配合使用来达到满意的效 ...

  3. python 网页转pdf

    主要使用的是wkhtmltopdf的Python封装——pdfkit centos环境 安装:Install python-pdfkit pip install pdfkit 安装:Install w ...

  4. 用 requests 模块从 Web 下载文件

    用 requests 模块从 Web 下载文件 requests 模块让你很容易从 Web 下载文件,不必担心一些复杂的问题,诸如网络错误.连接问题和数据压缩.requests 模块不是 Python ...

  5. access和MySQL mssql

    Access.MSSQL.MYSQL数据库之间有什么区别?     Access数据库.MSSQL数据库.MYSQL数据库之间有什么区别?        不少企业和个人站长在网站制作时,会对数据库的概 ...

  6. ossec安装

    安装 安装要求 对于Unix系统来说,OSSEC只需要GNU的make.gcc和libc.推荐使用OpenSSL,但仅属于一个可选项.而且,通常您只需在一个系统上做编译操作,然后将二进制程序复制到其他 ...

  7. dirname命令详解

    基础命令学习目录首页 原文链接:https://blog.csdn.net/xiaofei125145/article/details/50620281 示例一 来自手册页的例子 $ dirname ...

  8. 关于React面试题汇总

    1.redux中间件 中间件提供第三方插件的模式,自定义拦截 action -> reducer 的过程.变为 action -> middlewares -> reducer .这 ...

  9. 移动设备检测类Mobile_Detect.php

    移动设备检测类Mobile_Detect.php http://mobiledetect.net/ 分类:PHP 时间:2015年11月28日 Mobile_Detect.php是一个轻量级的开源移动 ...

  10. (第十周)Beta Review会议

    项目名:食物链教学工具 组名:奋斗吧兄弟 组长:黄兴 组员:李俞寰.杜桥.栾骄阳.王东涵 Beta Review会议 时间:2016.11.14   10:00——11:30.13:30——15:00 ...