已知数列$\{a_n\}$满足:$a_n>0,a_{n+1}+\dfrac{1}{a_n}<2,n\in N^*$.
求证:
(1)$a_{n+2}<a_{n+1}<2 (n\in N^*)$
(2)$a_n>1 (n\in N^*)$


第二题:分析:由题意$\{a_n\}$单调递减又有下界,故有极限,记$\lim\limits_{n\longrightarrow +\infty}a_n=x$
则由$a_{n+1}+\dfrac{1}{a_n}<2$两边取极限得$x+\dfrac{1}{x}\le2$,又由于$x+\dfrac{1}{x}\ge2$故$\lim\limits_{n\longrightarrow +\infty}a_n=1$
由单调递减得$a_n>1$

注:也可以用反证法,提示:关键递推式$\dfrac{1}{a_{n+1}-1}>1+\dfrac{1}{a_n-1}$

MT【159】单调有界有极限的更多相关文章

  1. MT【155】单调有界必有极限

    (清华2017.4.29标准学术能力测试20) 已知数列$\{a_n\}$,其中$a_1=a$,$a_2=b$,$a_{n+2}=a_n-\dfrac 7{a_{n+1}}$,则_______ A.$ ...

  2. Matlab求极限

    matlab求极限(可用来验证度量函数或者隶属度函数)可用来验证是否收敛,取值范围等等. 一.问题来源 搜集聚类资料时,又看到了隶属度函数,没错,就是下面这个,期间作者提到m趋于2是,结果趋于1,我想 ...

  3. python数学第一天【极限存在定理】

    1.基本回忆 2.两边夹定理 推论1. 基本三角函数的极限 2.极限存在定理 单调有界数列必有极限 (1)单调递增有上界数列必有极限 (2)单调递减有下界数列必有极限 推论1: (1+1/n)^n有极 ...

  4. 【2】从零认识中心极限思想-e往无尽

    目录 e往无尽 单调性.有界性 \(e^{-x^2}\)的积分性质 函数列的近似 傅里叶的方案 三角函数系的正交性 傅立叶展开 傅立叶展开式的指数形式 e往无尽 无论是学高数,还是学习数分,我们在讲到 ...

  5. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  6. '"千"第一周学习情况记录

    一周过去了,今天将我这一周的学习内容和主要感想记录与此和大家共同分享,一起进步.我将自己的学习计划命名为"千",因为我喜欢这个字,希望能用此来鼓舞自己不断前进.时间总是很快的,这一 ...

  7. 第五回. $e$ 的引入

    假如你有 $1$ 块钱, 存银行, 利率为 $100\%$, 那么一年后本息和为$$1+1=2.$$ 如果你换种存法, 存半年, 把本息和取出来, 再存半年, 那么一年后本息和为$$\left(1+\ ...

  8. 数学常数e的含义

    转载:   http://www.ruanyifeng.com/blog/2011/07/mathematical_constant_e.html 作者: 阮一峰 日期: 2011年7月 9日 1. ...

  9. 一个形式较精细的Strling公式的证明

    近日整理书稿,在整理至Strling公式处时,发现当时数学老师所讲的是形式比较精细的一种: Strling公式:\(n!=\sqrt{2\pi n}\left(\dfrac{n}{\mathrm{e} ...

随机推荐

  1. monkey测试入门1

    Monkey是一款通过命令行来对我们APP进行测试的工具,可以运行在模拟器里或真机上.它向系统发送伪随机的用户事件流,实现对正应用程序进行压力测试. 官方介绍 :https://developer.a ...

  2. 服务治理-> Spring Cloud Eureka

    服务治理->搭建服务注册中心 服务治理可以说是微服务架构中最为核心和基础的模块, 它主要用来实现各个微服务 实例的自动化注册与发现. 为什么我们在微服务架构中那么需要服务治理模块呢?微服务 系统 ...

  3. centos7.6 安装 openvpn--2.4.7

    openvpn-server端 搭建 1,软件版本 Centos - 7.x easy-rsa - 3.0.3 OpenVPN - 2.4.7 2,安装 建议安装启用epel源,采用yum的方式安装o ...

  4. kubeadm 线上集群部署(一) 外部 ETCD 集群搭建

      IP Hostname   192.168.1.23 k8s-etcd-01 etcd集群节点,默认关于ETCD所有操作均在此节点上操作 192.168.1.24 k8s-etcd-02 etcd ...

  5. 小刘的深度学习---Faster RCNN

    前言: 对于目标检测Faster RCNN有着广泛的应用,其性能更是远超传统的方法. 正文: R-CNN(第一个成功在目标检测上应用的深度学习的算法) 从名字上可以看出R-CNN是 Faster RC ...

  6. tree命令详解

    基础命令学习目录首页 原文链接:http://man.linuxde.net/tree -a:显示所有文件和目录:-A:使用ASNI绘图字符显示树状图而非以ASCII字符组合:-C:在文件和目录清单加 ...

  7. 字幕字体滚动插件——scroxt.js

    README scroxt.js Overview scroxt.js是一个字体滚动的插件库,包括视频弹幕滚动,直播弹幕.直播弹幕强制模式.单行水平左右滚动.文本垂直滚动上下,用于简单快捷生成滚动字体 ...

  8. 基于Promise规范的fetch API的使用

    基于Promise规范的fetch API的使用 fetch的使用 作用:fetch 这个API,是专门用来发起Ajax请求的: fetch 是由原生 JS 提供的 API ,专门用来取代 XHR 这 ...

  9. 数据库——SQL数据定义

    数据定义  SQL的数据定义语句 操 作 对 象 操  作  方  式 创  建 删  除 修  改 表 CREATE TABLE DROP TABLE ALTER TABLE 视  图 CREATE ...

  10. TeamWork#3,Week5,Scrum Meeting 11.16

    到目前为止各方面工作已经基本完成,爬虫程序也调整完毕,正在等待全部整合. 成员 已完成 待完成 彭林江 完成爬虫结构调整 新爬虫与服务器连接 郝倩 完成爬虫结构调整 新爬虫与服务器连接 高雅智 重定位 ...