UVA.12716 GCD XOR (暴力枚举 数论GCD)

题意分析

题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b.

前置技能

XOR的性质

GCD

由于题目只给出一个n,我们要求对数,能做的也始终暴力枚举a,b,这样就有n^2的复杂度,由于n很大,根本过不了。

于是我们就想用到其中一些性质,如XOR 与GCD,不妨假设 a xor b = c,并且根据题意还知道, gcd(a,b) = c,也就说明c一定是a的因子,所以在枚举的时候,可以转过头来枚举a和c.那么如何求出当前情况下的b呢,考虑到xor的性质,即 a xor b = c, a xor c = a xor a xor b = b. 通过异或运算就可以求解出来b,然后再检验gcd(a,b)是否为c即可。

到这里其实已经足够了,但是打出一定规模符合题意的(a,b,c),不难发现,a-b=c,有了这条性质,就可以不用gcd检验了。换句话说,通过枚举a,c,b = a-c计算出b,通过a^b=c检验是否符合条件。因为相对而言,位运算比gcd快得多。

值得一提的是,由于n很大,连续处理多个n很大的值的时候,速度表现不能令人满意,最先想到的办法就是打表方法。

代码总览

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#define nmax 30000010
#define ll long long
using namespace std;
int n;
int t;
int num[nmax]; void init(){
for(int c = 1;c<=(nmax+1)/2;++c){
for(int a = c+c;a<nmax;a+=c){
int b = a-c;
if((a^b) == c) num[a]++;
}
}
for(int i = 2;i<nmax;++i) num[i]+=num[i-1];
} int main()
{
int kase =1 ;
init();
scanf("%d",&t);
for(kase = 1; kase <=t;++kase){
scanf("%d",&n);
printf("Case %d: %d\n",kase,num[n]);
}
return 0;
}

UVA.12716 GCD XOR (暴力枚举 数论GCD)的更多相关文章

  1. Uva 10167 - Birthday Cake 暴力枚举 随机

      Problem G. Birthday Cake Background Lucy and Lily are twins. Today is their birthday. Mother buys ...

  2. UVA 725 division【暴力枚举】

    [题意]:输入正整数n,用0~9这10个数字不重复组成两个五位数abcde和fghij,使得abcde/fghij的商为n,按顺序输出所有结果.如果没有找到则输出“There are no solut ...

  3. UVa 10603 Fill [暴力枚举、路径搜索]

    10603 Fill There are three jugs with a volume of a, b and c liters. (a, b, and c are positive intege ...

  4. UVA 12716 GCD XOR(数论+枚举+打表)

     题意:给你一个N,让你求有多少组A,B,  满足1<= B <= A <= N, 且 gcd(A,B) = A XOR B. 思路:首先我们能够得出两个结论: A-B > ...

  5. GCD XOR UVA 12716 找规律 给定一个n,找多少对(a,b)满足1<=b<=a<=n,gcd(a,b)=a^b;

    /** 题目:GCD XOR UVA 12716 链接:https://vjudge.net/problem/UVA-12716 题意:给定一个n,找多少对(a,b)满足1<=b<=a&l ...

  6. uval 6657 GCD XOR

    GCD XORGiven an integer N, nd how many pairs (A; B) are there such that: gcd(A; B) = A xor B where1 ...

  7. [NOIP2009] $Hankson$ 的趣味题 (数论,gcd)

    题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(g ...

  8. 题解 UVA12716 GCD等于XOR GCD XOR

    规律题,打表找规律即可发现 a xor b >= a - b >= gcd(a, b), 如果 a xor b = gcd(a, b) = c 则 c = a - b 枚举倍数c和a判断b ...

  9. GCD XOR uvalive6657

    GCD XORGiven an integer N, nd how many pairs (A; B) are there such that: gcd(A; B) = A xor B where1 ...

随机推荐

  1. 点斜杠 & 如何查看linux程序安装位置 dpkg -L yyy

    方法1: sudo find / -name ssh 方法2: Ubuntu下 看应用程序安装路径的方法 ubuntu下dpkg -L xxx看应用程序安装路径 1.点斜杠 “./”就代表在当前目录下 ...

  2. iOS静态库.a总结(2017.1.24增加脚本打包方法)

    修改于:2017.1.24 1.什么是库? 库是程序代码的集合,是共享程序代码的一种方式 2.根据源代码的公开情况,库可以分为2种类型 a.开源库 公开源代码,能看到具体实现 ,比如SDWebImag ...

  3. Scrum立会报告+燃尽图(Final阶段第五次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2484 项目地址:https://coding.net/u/wuyy694 ...

  4. Scrum立会报告+燃尽图(十二月七日总第三十八次):功能测试

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2284 项目地址:https://git.coding.net/zhang ...

  5. BugPhobia展示篇章:学霸在线系统Alpha阶段展示

    0x00:序言 1 universe, 9 planets, 204 countries,809 islands, 7 seas, and i had the privilege to meet yo ...

  6. java实验1实验报告(20135232王玥)

    实验一 Java开发环境的熟悉 一.实验内容 1. 使用JDK编译.运行简单的Java程序 2.使用Eclipse 编辑.编译.运行.调试Java程序 二.实验要求 1.没有Linux基础的同学建议先 ...

  7. Linux环境下服务器环境搭建-mysql

    下载对应版本的mysql.rpm(Linux 6 安装el6 Linux 7 安装el7) 安装环境 centos 7,安装版本mysql57-community-release-el7-9.noar ...

  8. 《Spring2之站立会议4》

    <Spring2之站立会议4> 昨天,对主界面进行了设计,编写了主界面的代码,把文本输入框,显示框,发送,关闭两个按钮的功能实现了: 今天,接着对主界面进行代码的编写,实现了界面的美化,从 ...

  9. css3学习笔记一

    首先界面是二维的但也可以有三维的效果.先了解浏览器兼容性问题,火狐加前缀(-moz-)IE加(-MF-)谷歌加(-webkit),简单介绍css3的几个属性. 对于背景来说如果是单纯着一种颜色可以会单 ...

  10. 作业6 团队项目之需求 (NABCD模型)

     N A B C D模型分析 WorkGroup:NewApps 组员:欧其锋(201306114305  http://www.cnblogs.com/ouqifeng/) 吕日荣(20130611 ...