【BZOJ2839】集合计数(容斥,动态规划)

题面

BZOJ

权限题

Description

一个有N个元素的集合有2N个不同子集(包含空集),现在要在这2N个集合中取出若干集合(至少一个),使得

它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)

Input

一行两个整数N,K

Output

一行为答案。

Sample Input

3 2

Sample Output

6

题解

比较简单的容斥吧。。

设\(f[i]\)表示至少有\(i\)个相同元素的方案数

\(f[i]=C_n^k(2^{2^{n-k}}-1)\)

然后显然\(f[i]=\sum_{j=i}^n (-1)^{j-i}f[i]*C_j^i\)

时间复杂度\(O(nlogn)\),瓶颈在快速幂

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MOD 1000000007
#define MAX 1000001
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,int b,int mod)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%mod;a=1ll*a*a%mod;b>>=1;}
return s;
}
int f[MAX],n,k;
int jc[MAX],jv[MAX],inv[MAX];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
n=read(),k=read();
jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=1;i<=n;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<=n;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=k;i<=n;++i)f[i]=1ll*C(n,i)*(fpow(2,fpow(2,n-i,MOD-1),MOD)-1)%MOD;
for(int i=k+1,d=1;i<=n;++i,d=MOD-d)f[k]=(f[k]+MOD-1ll*f[i]*C(i,k)%MOD*d%MOD)%MOD;
printf("%d\n",f[k]);
return 0;
}

【BZOJ2839】集合计数(容斥,动态规划)的更多相关文章

  1. bzoj2839: 集合计数 容斥+组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 523  Solved: 287[Submit][Status][Discuss] ...

  2. BZOJ2839:集合计数(容斥,组合数学)

    Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...

  3. BZOJ2839 集合计数 容斥

    题目描述(权限题qwq) 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模100000000 ...

  4. bzoj 2839 集合计数 容斥\广义容斥

    LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...

  5. bzoj2839 集合计数(容斥)

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 883  Solved: 490[Submit][Status][Discuss] ...

  6. bzoj2839 集合计数(容斥+组合)

    集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出     题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...

  7. BZOJ2839 : 集合计数 (广义容斥定理)

    题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...

  8. [BZOJ2839]:集合计数(组合数学+容斥)

    题目传送门 题目描述 .(是质数喔~) 输入格式 一行两个整数N,K. 输出格式 一行为答案. 样例 样例输入: 3 2 样例输出: 样例说明 假设原集合为{A,B,C} 则满足条件的方案为:{AB, ...

  9. bzoj2839 集合计数 组合计数 容斥原理|题解

    集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...

  10. 2019.02.09 bzoj2839: 集合计数(容斥原理)

    传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk​种方案 ...

随机推荐

  1. 开始认真的学习Python

    虽然以前有多年的Fortran.C.C++以及Java开发经验,但真的开始熟悉Python还是被惊艳到了,太舒服了,看起来有如沐春风的感觉,简洁和优美,这个才是代码艺术.

  2. python自编程序实现——robert算子、sobel算子、Laplace算子进行图像边缘提取

    实现思路: 1,将传进来的图片矩阵用算子进行卷积求和(卷积和取绝对值) 2,用新的矩阵(与原图一样大小)去接收每次的卷积和的值 3,卷积图片所有的像素点后,把新的矩阵数据类型转化为uint8 注意: ...

  3. 用Unity的UGUI实现简单摇杆

    1.在Canvas下新建一个空对象作为我们的摇杆,命名为Joystick. 摇杆由背景和杆两部分组成,所以在Joystick下新建一个Image作为摇杆的背景,命名为BG. 在BG下新建一个Image ...

  4. 初试Shell脚本

    背景 临上线前测试比较努力,遇到闪退或者其他问题,会把日志包打给我,由于app内存限制,目前每次打包都是1m大小,所以有时查找问题的上下文比较吃力.同时由于日志比较多,根据关键词过滤的需求越来越重要. ...

  5. linux文件种类及其扩展名

    文件种类 普通文件(ls -al出来第一列为-) 纯文本文件(ASCII):linux系统中最多的一种文件类型,可以使用cat直接读取: 二进制文件(binary):linux下面的可执行文件: 数据 ...

  6. Streamr助你掌控自己的数据(1)——教你5分钟上传数据至Streamr

    博客说明 所有刊发内容均可转载但是需要注明出处. 教你5分钟上传数据至Streamr 本系列文档主要介绍怎么通过Streamr管理自己的DATA,整个系列包括三篇教程文档,分别是:教你5分钟上传数据至 ...

  7. jQuery的基本使用

    一.jQuery简介 jQuery是一个快速.简洁的JavaScript框架,它封装了JavaScript常用的功能代码,提供一种简便的JavaScript设计模式,优化HTML文档操作.事件处理.动 ...

  8. react-native ListView 性能问题

    常见性能问题已经有很多答案,这里要说的是使用ListView时注意的地方,    ListView的容器需要设定一个固定高度, 不然ListView中的item过多,会把整体页面撑开,设置的 remo ...

  9. Linux课程学习之我思

    陈民禾,原创作品转载请注明出处<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000,我的博客中有一部分是出自M ...

  10. KMP算法之next数组的求解思路

    2.next数组的求解思路 本部分内容转自:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algo ...