P1436 棋盘分割

题目描述

将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘。(每次切割都只能沿着棋盘格子的边进行)

原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和。现在需要把棋盘按上述规则分割成n块矩形棋盘,并使各矩形棋盘总分的平方和最小。

请编程对给出的棋盘及n,求出平方和的最小值。

输入输出格式

输入格式:

第1行为一个整数n(1 < n < 15)。

第2行至第9行每行为8个小于100的非负整数,表示棋盘上相应格子的分值。每行相邻两数之间用一个空格分隔。

输出格式:

仅一个数,为平方和。


大力区间DP

\(dp[i][j][k][l][dep]\)表示左上角坐标为\((i,j)\),右下角为\((k,l)\)的矩形在处于第\(dep\)次切割时产生的答案

我打的是记忆化搜索


Code:

#include <cstdio>
#include <cstring>
const int inf=0x3f3f3f3f;
int min(int x,int y){return x<y?x:y;}
int n,score[9][9],f[9][9],dp[9][9][9][9][16];//左上角,右下角
int get(int i,int j,int k,int l)
{
return f[k][l]-f[k][j-1]-f[i-1][l]+f[i-1][j-1];
}
int dfs(int x1,int y1,int x2,int y2,int dep)
{
if(~dp[x1][y1][x2][y2][dep]) return dp[x1][y1][x2][y2][dep];
dp[x1][y1][x2][y2][dep]=inf;
for(int i=x1;i<x2;i++)
{
dp[x1][y1][x2][y2][dep]=min(dp[x1][y1][x2][y2][dep],dfs(x1,y1,i,y2,dep+1)+get(i+1,y1,x2,y2)*get(i+1,y1,x2,y2));
dp[x1][y1][x2][y2][dep]=min(dp[x1][y1][x2][y2][dep],dfs(i+1,y1,x2,y2,dep+1)+get(x1,y1,i,y2)*get(x1,y1,i,y2));
}
for(int i=y1;i<y2;i++)
{
dp[x1][y1][x2][y2][dep]=min(dp[x1][y1][x2][y2][dep],dfs(x1,y1,x2,i,dep+1)+get(x1,i+1,x2,y2)*get(x1,i+1,x2,y2));
dp[x1][y1][x2][y2][dep]=min(dp[x1][y1][x2][y2][dep],dfs(x1,i+1,x2,y2,dep+1)+get(x1,y1,x2,i)*get(x1,y1,x2,i));
}
return dp[x1][y1][x2][y2][dep];
}
int main()
{
scanf("%d",&n);
memset(dp,-1,sizeof(dp));
for(int i=1;i<=8;i++)
for(int j=1;j<=8;j++)
{
scanf("%d",&score[i][j]);
f[i][j]=f[i-1][j]+f[i][j-1]-f[i-1][j-1]+score[i][j];
}
for(int i=1;i<=8;i++)
for(int j=1;j<=8;j++)
for(int k=1;k<=8;k++)
for(int l=1;l<=8;l++)
dp[i][j][k][l][n]=get(i,j,k,l)*get(i,j,k,l);
printf("%d\n",dfs(1,1,8,8,1));
return 0;
}

2018.7.11

洛谷 P1436 棋盘分割 解题报告的更多相关文章

  1. 洛谷P1436 棋盘分割

    洛谷题目链接 动态规划: 我们设状态$f[i][j][o][p][k]$表示一个矩形,左上角顶点坐标为$(i,j)$,右下角顶点坐标为$(o,p)$时分割了$k$次,也就是说现在是$k+1$块 我们考 ...

  2. 洛谷 P1783 海滩防御 解题报告

    P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...

  3. 洛谷 P4597 序列sequence 解题报告

    P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...

  4. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  5. 洛谷 P1069 细胞分裂 解题报告

    P1069 细胞分裂 题目描述 \(Hanks\)博士是\(BT\) (\(Bio-Tech\),生物技术) 领域的知名专家.现在,他正在为一个细胞实验做准备工作:培养细胞样本. \(Hanks\) ...

  6. 洛谷 P3349 [ZJOI2016]小星星 解题报告

    P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...

  7. 洛谷 P2041 分裂游戏 解题报告

    P2041 分裂游戏 题目描述 有一个无限大的棋盘,棋盘左下角有一个大小为 n 的阶梯形区域,其中最左下角的那个格子里有一枚棋子.你每次可以把一枚棋子"分裂"成两枚棋子,分别放在原 ...

  8. 洛谷 P3177 树上染色 解题报告

    P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...

  9. 洛谷 P4705 玩游戏 解题报告

    P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^ ...

随机推荐

  1. jsp内置对象 转发与重定向的区别

    jsp 内置对象  转发与重定向的比较 重定向和转发有一个重要的不同:当使用转发时,JSP容器将使用一个内部的方法来调用目标页面,新的页面继续处理同一个请求,而浏览器将不会知道这个过程. 与之相反,重 ...

  2. php从入门到放弃系列-03.php函数和面向对象

    php从入门到放弃系列-03.php函数和面向对象 一.函数 php真正的威力源自它的函数,内置了1000个函数,可以参考PHP 参考手册. 自定义函数: function functionName( ...

  3. Go入门指南

    第一部分:学习 Go 语言 第1章:Go 语言的起源,发展与普及 1.1 起源与发展 1.2 语言的主要特性与发展的环境和影响因素 第2章:安装与运行环境 2.1 平台与架构 2.2 Go 环境变量 ...

  4. IntelliJ 10.0.1设置系统的JDK

    IntelliJ 10.0.1设置JDK: File-->Project Structure: project SDK--New a jsdk.

  5. jsweb常用代码

    <script> $(function (){ $.ajax({ url: 'https://test.com:8080/api/v1/users?query_not_auth=100&a ...

  6. servlet基础学习总结

    Servlet的任务 1.  读取客户端发送的显示的数据,包括HTML表单和一些客户端程序的表单 2.  读取客户端发送的隐式的数据,包括cookies.媒体类型等 3.  处理数据并产生结果 4.  ...

  7. Task 6.3 场景调研

    1.背景: (1)典型用户:信息1303班王银凤 (2)用户的需求/迫切需要解决的问题:她们宿舍上网一直使用的是外网,一年400的一种“套餐”.这种是按小时计算的,在校的时间平均下来一天可以用7 . ...

  8. Go going软件NABCD

    N  (Need 需求):gogoing项目目前打算做得是一个基于石家庄铁道大学在校大学生对于短期节假日出行旅游的指南.次关键的定义为“简单”.“简单”则体现在我们的软件使用简单.方便,以及界面的简洁 ...

  9. 守护线程(Daemon Thread)

    在Java中有两类线程:用户线程 (User Thread).守护线程 (Daemon Thread). 所谓守护 线程,是指在程序运行的时候在后台提供一种通用服务的线程,比如垃圾回收线程就是一个很称 ...

  10. Angular与PHP之间的不同的请求方式(post/get)导致的传参问题

    angularJS的$http发送POST请求,PHP无法接受数据的问题 使用jQuery进行ajax请求 $.ajax({ type: 'POST', url:'url.php', data: da ...