题目描述

共有n个学生,m个学习小组,每个学生只愿意参加其中的一些学习小组,且一个学生最多参加k个学习小组。每个学生参加学习小组财务处都收一定的手续费,不同的学习小组有不同的手续费。若有a个学生参加第i个学习小组,财务处支付奖励 \(C_i \times a^2\) 元。在参与学生(而不是每个学习小组的人数总和)尽量多的情况下,求财务处最少要支出多少钱。

输入输出格式

输入格式:

输入有若干行,第一行有三个用空格隔开的正整数n、m、k。接下来的一行有m个正整数,表示每个Ci。第三行有m个正整数,表示参加每个学习小组需要交的手续费Fi。再接下来有一个n行m列的矩阵,表若第i行j列的数字是1,则表示第i个学生愿意参加第j个学习小组,若为0,则为不愿意。

输出格式:

输出只有一个整数,为最小的支出。

输入输出样例

输入样例#1:

3 3 1

1 2 3

3 2 1

111

111

111

输出样例#1:

-2

说明

100%的数据,0<n≤100,0<m≤90,0<k≤m,0< \(C_i\)​ ≤10,0< \(F_i\)​ ≤100。

题解

源点向所有学生连边,容量为 \(k\) ,费用为 \(0\) ,代表最多参加 \(k\) 个社团

所有学生向汇点连边,容量为 \(k-1\) ,费用为 \(0\) ,代表学生至少要参加一个社团

所有学生向能参加的社团连边,容量为 \(1\) ,费用为需要缴纳的费用的相反数

所有社团向源点连边,连 \(n\) 条边,第 \(i\) 条边代表有 \(i\) 个学生加入了该社团,容量为 \(1\) ,费用为 \(C \times (2i-1)\) ,因为 \(i^2-(i-1)^2=2i-1\) ,这是第 \(i\) 个人加入后要多给的费用

然后跑费用流即可

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=200+10,MAXM=MAXN*MAXN+10,inf=0x3f3f3f3f;
int n,m,k,e=1,s,t,clk,answas,beg[MAXN],cur[MAXN],level[MAXN],vis[MAXN],p[MAXN],C[MAXN],F[MAXN],to[MAXM<<1],nex[MAXM<<1],cap[MAXM<<1],was[MAXM<<1];
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z,int w)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
was[e]=w;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
was[e]=-w;
}
inline bool bfs()
{
memset(level,inf,sizeof(level));
level[s]=0;
p[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
p[x]=0;
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&level[to[i]]>level[x]+was[i])
{
level[to[i]]=level[x]+was[i];
if(!p[to[i]])p[to[i]]=1,q.push(to[i]);
}
}
return level[t]!=inf;
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
vis[x]=clk;
int res=0;
for(register int &i=cur[x];i;i=nex[i])
if((vis[x]^vis[to[i]])&&cap[i]&&level[to[i]]==level[x]+was[i])
{
int f=dfs(to[i],min(maxflow,cap[i]));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
answas+=f*was[i];
maxflow-=f;
if(!maxflow)break;
}
return res;
}
inline void MCMF()
{
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),dfs(s,inf);
}
int main()
{
read(n);read(m);read(k);
s=n+m+1,t=s+1;
for(register int i=1;i<=n;++i)insert(s,i,k,0),insert(i,t,k-1,0);
for(register int i=1;i<=m;++i)read(C[i]);
for(register int i=1;i<=m;++i)
for(register int j=1;j<=n;++j)insert(i+n,t,1,C[i]*(2*j-1));
for(register int i=1;i<=m;++i)read(F[i]);
for(register int i=1;i<=n;++i)
{
char s[100];scanf("%s",s);
for(register int j=0;j<m;++j)
if(s[j]=='1')insert(i,j+1+n,1,-F[j+1]);
}
MCMF();
write(answas,'\n');
return 0;
}

【刷题】洛谷 P4209 学习小组的更多相关文章

  1. 2018.10.30 一题 洛谷4660/bzoj1168 [BalticOI 2008]手套——思路!问题转化与抽象!+单调栈

    题目:https://www.luogu.org/problemnew/show/P4660 https://www.lydsy.com/JudgeOnline/problem.php?id=1168 ...

  2. AC日记——大爷的字符串题 洛谷 P3709

    大爷的字符串题 思路: 莫队,需开O2,不开50: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 20000 ...

  3. Mychael原创题 洛谷T23923 Mychaelの水题 【题解】

    原题链接 题目大意: 有来自三个地区的人各a,b,c位,他们排成了一排.请问有多少种不同类型的排法,使得相邻的人都来自不同的地区 \(a,b,c<=200\) 答案取模 题解 弱弱的标程解法 设 ...

  4. 最短路径Dijkstra算法模板题---洛谷P3371 【模板】单源最短路径(弱化版)

    题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779. 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入格式 第一行 ...

  5. [网络流24题] 洛谷P2761 软件补丁问题

    题意:某公司发现其研制的一个软件中有 n个错误,随即为该软件发放了一批共 m 个补丁程序.对于每一个补丁 i ,都有 2 个与之相应的错误集合 B1(i)和 B2(i),使得仅当软件包含 B1(i)中 ...

  6. 高精度加法——经典题 洛谷p1601

    题目背景 无 题目描述 高精度加法,x相当于a+b problem,[b][color=red]不用考虑负数[/color][/b] 输入输出格式 输入格式: 分两行输入a,b<=10^500 ...

  7. 洛谷P2776 [SDOI2007]小组队列 链表 + 模拟

    有些细节需要注意: 1.编号和元素种类都从0开始标号. 2.需要特判一下队列被弹空的情况. Code: #include<cstdio> #include<cstring> u ...

  8. 用Python写算法题--洛谷P1149 火柴棒等式

    题目 题目来源 P1149 火柴棒等式,https://www.luogu.org/problem/P1149 题目描述 给你n根火柴棍,你可以拼出多少个形如"A+B=C"的等式? ...

  9. dijkstra模板题 洛谷1339 邻接图建边

    题目链接:https://www.luogu.com.cn/problem/P1339 朴素dijkstra算法的复杂度是O(n^2),用堆优化的dijkstra复杂度是O(nlogn)的.在本题中前 ...

随机推荐

  1. 使用TCP在同一台电脑上可以建立连接,在两台电脑上却连接失败的原因分析

    最近在用unity做联机游戏,在网络方面费了不少劲,总是在代码没问题的时候出一些莫名奇妙的BUG,不过后来都决定了.如果感觉代码没问题,八成就是防火墙的问题. 用unity发布后的游戏,如果涉及网络, ...

  2. 高可用注册中心 ->Spring Cloud Eureka

    在微服务架构这样的分布式环境中,我们需要充分考虑发生故障的情况, 所以在生产 环境中必须对各个组件进行高可用部署, 对于微服务如此, 对于服务注册中心也一样. 但 是到本节为止,我们一直都在使用单节点 ...

  3. 3星|《实战复盘第四季·商业巨头们的变革之道》:GE、TCL、力拓集团、英美资源集团等企业总裁的变更经验

    实战复盘第四季·商业巨头们的变革之道(<哈佛商业评论>增刊) 本期是<哈佛商业评论>“实战复盘”栏目的10篇文章,讲的是GE.TCL.力拓集团.英美资源集团等企业如何熬过变革期 ...

  4. 【Ansible】ansible循环

    Ansible 循环 一.简单介绍 在ansible2.5之前,大多数人使”with_XXX”类型的关键字来操作循环,但是从2.6版本开始,官方推荐是”loop”关键字代替” with_XXX”. 1 ...

  5. 从Web抓取信息的几个常用方法

    1.Response 对象有一个 status_code 属性,可以检查它是否等于requests.codes.ok. 2.raise_for_status()方法是一种很好的方式,确保程序在下载失败 ...

  6. hadoop之定制自己的Partitioner

    partitioner负责shuffle过程的分组部分,目的是让map出来的数据均匀分布在reducer上,当然,如果我们不需要数据均匀,那么这个时候可以自己定制符合要求的partitioner. 下 ...

  7. Linux命令之mount挂载

    挂载概念 Linux中的根目录以外的文件要想被访问,需要将其“关联”到根目录下的某个目录来实现,这种关联操作就是“挂载”,这个目录就是“挂载点”,解除次关联关系的过程称之为“卸载”. 注意:“挂载点” ...

  8. NDK 链接第三方静态库的方法

    将NDK编译的第三方静态拷贝到JNI目录下,在Android.mk中添加如下代码 以openssl静态库(libcrypto-static.a)为例 第一种链接方法:LOCAL_LDFLAGS := ...

  9. html , body , margin , overflow 之大乱战

    <!DOCTYPE html> <html> <head> <style> html,body{ margin:0 ;padding:0 } div{m ...

  10. Python爬虫框架Scrapy学习笔记原创

     字号 scrapy [TOC] 开始 scrapy安装 首先手动安装windows版本的Twisted https://www.lfd.uci.edu/~gohlke/pythonlibs/#twi ...