http://www.lydsy.com/JudgeOnline/problem.php?id=4016 (题目链接)

题意

  给出一张无向图,求出它的最小路径树,然后求最小路径树上节点数为${K}$的最长路径,并求出这样的路径有多少条。

Solution

  mdzz看错题了,以为求路径条数的时候对节点个数没有要求。。

  抠最小路径树有点恶心,还对字典序有要求,参见了DaD3zZ的方法,枚举边,将符合距离条件的连边,然后dfs,优先字典序小的。

  至于点分治,就是两个数组搞一搞,挺简单的一个统计。

细节

  不要乱用memset,不然复杂度就不对了。

  这种比较长的程序写在namespace或者结构体里面会比较清晰吧。

代码

// bzoj4016
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#include<queue>
#include<map>
#define LL long long
#define inf 1ll<<30
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=30010,maxm=60010;
int vis[maxn],deep[maxn],f[maxn],size[maxn],head[maxn];
int n,m,K,cnt,sum,Dargen;
int ans1;LL ans2; struct edge {int from,to,next,w;}e[maxm<<1]; namespace Prepare {
int dis[maxn];
vector<int> v[maxn];
struct data {
int num,w;
friend bool operator < (const data a,const data b) {
return a.w>b.w;
}
}; void link(int u,int v,int w) {
e[++cnt]=(edge){u,v,head[u],w};head[u]=cnt;
e[++cnt]=(edge){v,u,head[v],w};head[v]=cnt;
}
void Dijkstra() {
priority_queue<data> q;
for (int i=1;i<=n;i++) dis[i]=inf;
q.push((data){1,0});dis[1]=0;
while (!q.empty()) {
data x=q.top();q.pop();
if (vis[x.num]) continue;
vis[x.num]=1;
for (int i=head[x.num];i;i=e[i].next)
if (!vis[e[i].to] && dis[e[i].to]>x.w+e[i].w) {
dis[e[i].to]=x.w+e[i].w;
q.push((data){e[i].to,dis[e[i].to]});
}
}
for (int i=1;i<=cnt;i++) {
int uu=e[i].from,vv=e[i].to,ww=e[i].w;
if (dis[uu]+ww==dis[vv]) v[uu].push_back(vv);
}
}
void build(int x) {
vis[x]=1;
sort(v[x].begin(),v[x].end());
int l=v[x].size();
for (int i=0;i<l;i++) if (!vis[v[x][i]]) {
link(x,v[x][i],dis[v[x][i]]-dis[x]);
build(v[x][i]);
}
}
} namespace NodeDivide {
int D[maxn],d[maxn],cntd[maxn],cntD[maxn]; void caldargen(int x,int fa) {
size[x]=1;f[x]=0;
for (int i=head[x];i;i=e[i].next) if (!vis[e[i].to] && e[i].to!=fa) {
caldargen(e[i].to,x);
size[x]+=size[e[i].to];
f[x]=max(f[x],size[e[i].to]);
}
f[x]=max(f[x],sum-size[x]);
if (f[x]<f[Dargen]) Dargen=x;
}
void caldeep(int x,int fa,int l) {
if (d[deep[x]]<l) d[deep[x]]=l,cntd[deep[x]]=1;
else if (d[deep[x]]==l) cntd[deep[x]]++;
for (int i=head[x];i;i=e[i].next) if (e[i].to!=fa && !vis[e[i].to]) {
deep[e[i].to]=deep[x]+1;
caldeep(e[i].to,x,l+e[i].w);
}
}
void work(int x) {
vis[x]=1;
for (int i=head[x];i;i=e[i].next) if (!vis[e[i].to]) {
deep[e[i].to]=1;
caldeep(e[i].to,0,e[i].w);
for (int j=1;d[j] && j<K;j++) {
if (ans1<D[K-1-j]+d[j]) {
ans1=D[K-1-j]+d[j];
ans2=(LL)cntD[K-1-j]*cntd[j];
}
else if (ans1==D[K-1-j]+d[j]) ans2+=(LL)cntD[K-1-j]*cntd[j];
}
for (int j=1;d[j];j++) {
if (D[j]<d[j]) D[j]=d[j],cntD[j]=cntd[j];
else if (D[j]==d[j]) cntD[j]+=cntd[j];
d[j]=cntd[j]=0;
}
}
for (int i=1;D[i];i++) D[i]=cntD[i]=0;
for (int i=head[x];i;i=e[i].next) if (!vis[e[i].to] && size[e[i].to]>=K) {
Dargen=0;sum=size[e[i].to];
caldargen(e[i].to,0);
work(Dargen);
}
}
void Init() {
memset(vis,0,sizeof(vis));
f[0]=inf;sum=n;cntD[0]=1;
Dargen=0;caldargen(1,0);
work(Dargen);
}
} int main() {
scanf("%d%d%d",&n,&m,&K);
for (int u,v,w,i=1;i<=m;i++) {
scanf("%d%d%d",&u,&v,&w);
Prepare::link(u,v,w);
}
Prepare::Dijkstra();
memset(head,0,sizeof(head));
memset(vis,0,sizeof(vis));
cnt=0;
Prepare::build(1);
NodeDivide::Init();
printf("%d %lld",ans1,ans2);
return 0;
}

【bzoj4016】 FJOI2014—最短路径树问题的更多相关文章

  1. [BZOJ4016][FJOI2014]最短路径树问题

    [BZOJ4016][FJOI2014]最短路径树问题 试题描述 给一个包含n个点,m条边的无向连通图.从顶点1出发,往其余所有点分别走一次并返回. 往某一个点走时,选择总长度最短的路径走.若有多条长 ...

  2. [BZOJ4016][FJOI2014]最短路径树问题(dijkstra+点分治)

    4016: [FJOI2014]最短路径树问题 Time Limit: 5 Sec  Memory Limit: 512 MBSubmit: 1796  Solved: 625[Submit][Sta ...

  3. 【BZOJ4016】[FJOI2014]最短路径树问题

    [BZOJ4016][FJOI2014]最短路径树问题 题面 bzoj 洛谷 题解 虽然调了蛮久,但是思路还是蛮简单的2333 把最短路径树构出来,然后点分治就好啦 ps:如果树构萎了,这组数据可以卡 ...

  4. 【BZOJ4016】[FJOI2014]最短路径树问题 最短路径树+点分治

    [BZOJ4016][FJOI2014]最短路径树问题 Description 给一个包含n个点,m条边的无向连通图.从顶点1出发,往其余所有点分别走一次并返回. 往某一个点走时,选择总长度最短的路径 ...

  5. 【BZOJ4016】[FJOI2014]最短路径树问题(点分治,最短路)

    [BZOJ4016][FJOI2014]最短路径树问题(点分治,最短路) 题面 BZOJ 洛谷 题解 首先把最短路径树给构建出来,然后直接点分治就行了. 这个东西似乎也可以长链剖分,然而没有必要. # ...

  6. bzoj 4016 [FJOI2014]最短路径树问题(最短路径树+树分治)

    4016: [FJOI2014]最短路径树问题 Time Limit: 5 Sec  Memory Limit: 512 MBSubmit: 426  Solved: 147[Submit][Stat ...

  7. BZOJ_4016_[FJOI2014]最短路径树问题_最短路+点分治

    BZOJ_4016_[FJOI2014]最短路径树问题_最短路+点分治 Description 给一个包含n个点,m条边的无向连通图.从顶点1出发,往其余所有点分别走一次并返回. 往某一个点走时,选择 ...

  8. 【BZOJ-4016】最短路径树问题 Dijkstra + 点分治

    4016: [FJOI2014]最短路径树问题 Time Limit: 5 Sec  Memory Limit: 512 MBSubmit: 1092  Solved: 383[Submit][Sta ...

  9. [FJOI2014]最短路径树问题 长链剖分

    [FJOI2014]最短路径树问题 LG传送门 B站传送门 长链剖分练手好题. 如果你还不会长链剖分的基本操作,可以看看我的总结. 这题本来出的很没水平,就是dijkstra(反正我是不用SPFA)的 ...

  10. 洛谷 [FJOI2014]最短路径树问题 解题报告

    [FJOI2014]最短路径树问题 题目描述 给一个包含\(n\)个点,\(m\)条边的无向连通图.从顶点\(1\)出发,往其余所有点分别走一次并返回. 往某一个点走时,选择总长度最短的路径走.若有多 ...

随机推荐

  1. Tesseract 4 自行构建支持双引擎的tessdata 文件

    Tesseract 4 版本具备两种识别引擎:新的基于LSTM(神经网络)引擎与传统引擎.通过在初始化时设定不同的EngineMode启动. OCR Engine modes: 0 Legacy en ...

  2. type命令详解

    转自:http://codingstandards.iteye.com/blog/831504 在脚本中type可用于检查命令或函数是否存在,存在返回0,表示成功:不存在返回正值,表示不成功. $ t ...

  3. 移动设备检测类Mobile_Detect.php

    移动设备检测类Mobile_Detect.php http://mobiledetect.net/ 分类:PHP 时间:2015年11月28日 Mobile_Detect.php是一个轻量级的开源移动 ...

  4. Dao DaoImp

    DAO层:DAO层主要是做数据持久层的工作,负责与数据库进行联络的一些任务都封装在此,DAO层的设计首先是设计DAO的接口,然后在Spring的配置文件中定义此接口的实现类,然后就可在模块中调用此接口 ...

  5. C++ 类 析构函数

    一.析构函数的定义 析构函数为成员函数的一种,名字与类名相同,在前面加‘~’没有参数和返回值在C++中“~”是位取反运算符.一个类最多只能有一个析构函数.析构函数不返回任何值,没有函数类型,也没有函数 ...

  6. CF 1100C NN and the Optical Illusion(数学)

    NN is an experienced internet user and that means he spends a lot of time on the social media. Once ...

  7. No.1_NABCD模型分析

        Reminder 之 NABCD模型分析           定位 多平台的闹钟提醒软件. 在安卓市场发布软件,发布后一周的用户量为1000.           N (Need 需求) 这个 ...

  8. 乱码之UTF-8 &GBK

    在提交JSP时对于乱码问题,首先我们要搞清楚为什么会出现乱码? 看JSP的头文件:<%@ page contentType="text/html;charset=UTF-8" ...

  9. mysql密码忘记解决方案

    方法:在忘记root密码的时候,可以这样 以windows为例: 1. 关闭正在运行的MySQL服务. 2. 打开DOS窗口,转到mysql\bin目录. 3. 输入mysqld --skip-gra ...

  10. 《构建之法》第四&十七章读书笔记

     <构建之法>第四&十七章读书笔记 一.         前言 再次阅读<构建之法>,愈发被其中生动有趣的举例吸引.作为一本给予软件工程学生的书籍,其不以枯燥的理论知识 ...