【bzoj1937】 Shoi2004—Mst 最小生成树
http://www.lydsy.com/JudgeOnline/problem.php?id=1937 (题目链接)
题意
一个无向图,给出一个生成树,可以修改每条边的权值,问最小修改多少权值使得给出的生成树是最小生成树。
Solution
好神!!!!!
首先,由贪心可知,生成树上的边我们肯定是减小它的权值,非树边我们肯定是增大它的权值。假设树边$i$的权值$w_i$,修改后的权值$w_i-d_i$;非树边$j$的权值$w_j$,修改后的权值$w_j+d_j$。如果$j$有可能代替$i$,那么它们必须满足式子$w_i-d_i<=w_j+d_j$,移下项$w_i-w_j<=d_i+d_j$,是不是很像KM里面的顶标,所以我们把边当做点,边权为两个有制约关系的边的权值差,跑KM求最大权完美匹配就可以了。
纠结了好久,蛋疼死了。我们的确是要求最小的$\sum d_i$,但是$w_i-w_j<=d_i+d_j$的意义是要求对所有的$i,j$都得满足。我们需要在满足条件的情况下不断缩小$\sum d_i$,所以完美匹配以后我们可以使$\sum d_i$最小。
细节
边权非负。可能不会完美匹配,需要加点加边。
代码
// bzoj1937
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf (1ll<<30)
#define MOD 1000000007
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=1010;
int head[maxn],deep[maxn],vis[maxn],fa[maxn],id[maxn][maxn],n,m,cnt;
int slack[maxn],vx[maxn],vy[maxn],lx[maxn],ly[maxn],p[maxn],mp[maxn][maxn];
struct data {int u,v,w;}a[maxn];
struct edge {int to,next;}e[maxn<<1]; void link(int u,int v) {
e[++cnt]=(edge){v,head[u]};head[u]=cnt;
e[++cnt]=(edge){u,head[v]};head[v]=cnt;
}
void dfs(int x) {
for (int i=head[x];i;i=e[i].next) if (e[i].to!=fa[x]) {
deep[e[i].to]=deep[x]+1;
fa[e[i].to]=x;
dfs(e[i].to);
}
}
bool match(int x) {
vx[x]=cnt;
for (int y=1;y<=m;y++) if (vy[y]!=cnt) {
int t=lx[x]+ly[y]-mp[x][y];
if (!t) {
vy[y]=cnt;
if (!p[y] || match(p[y])) {p[y]=x;return 1;}
}
else slack[y]=min(slack[y],t);
}
return 0;
}
int KM() {
for (int i=1;i<=m;i++) {
lx[i]=-inf;
for (int j=1;j<=m;j++) lx[i]=max(lx[i],mp[i][j]);
}
cnt=0;
for (int x=1;x<=m;x++) {
for (int i=1;i<=m;i++) slack[i]=inf;
while (1) {
int d=inf;cnt++;
if (match(x)) break;
for (int i=1;i<=m;i++) if (vy[i]!=cnt) d=min(d,slack[i]);
for (int i=1;i<=m;i++) {
if (vx[i]==cnt) lx[i]-=d;
if (vy[i]==cnt) ly[i]+=d;
}
}
}
int ans=0;
for (int i=1;i<=m;i++) ans+=mp[p[i]][i];
return ans;
}
int main() {
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++) {
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w);
id[a[i].u][a[i].v]=id[a[i].v][a[i].u]=i;
}
for (int u,v,i=1;i<n;i++) {
scanf("%d%d",&u,&v);
link(u,v);vis[id[u][v]]=1;
}
dfs(1);memset(head,0,sizeof(head));cnt=0;
for (int i=1;i<=m;i++) if (!vis[i]) {
int x=a[i].u,y=a[i].v,w=a[i].w;
if (deep[x]<deep[y]) swap(x,y);
int t=deep[x]-deep[y];
while (t--) mp[id[x][fa[x]]][i]=max(0,a[id[x][fa[x]]].w-w),x=fa[x];
while (x!=y) {
mp[id[x][fa[x]]][i]=max(0,a[id[x][fa[x]]].w-w);
mp[id[y][fa[y]]][i]=max(0,a[id[y][fa[y]]].w-w);
x=fa[x],y=fa[y];
}
}
printf("%d",KM());
return 0;
}
【bzoj1937】 Shoi2004—Mst 最小生成树的更多相关文章
- [BZOJ1937][SHOI2004]Mst最小生成树(KM算法,最大费用流)
1937: [Shoi2004]Mst 最小生成树 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 802 Solved: 344[Submit][Sta ...
- 【KM】BZOJ1937 [Shoi2004]Mst 最小生成树
这道题拖了好久因为懒,结果1A了,惊讶∑( 口 || [题目大意] 给定一张n个顶点m条边的有权无向图.现要修改各边边权,使得给出n-1条边是这张图的最小生成树,代价为变化量的绝对值.求最小代价之和. ...
- BZOJ1937 [Shoi2004]Mst 最小生成树
首先由贪心的想法知道,树边只减不加,非树边只加不减,令$w_i$表示i号边原来的边权,$d_i$表示i号边的改变量 对于一条非树边$j$连接着两个点$x$.$y$,则对于$xy$这条路径上的所有树边$ ...
- 【BZOJ1937】[Shoi2004]Mst 最小生成树 KM算法(线性规划)
[BZOJ1937][Shoi2004]Mst 最小生成树 Description Input 第一行为N.M,其中 表示顶点的数目, 表示边的数目.顶点的编号为1.2.3.…….N-1.N.接下来的 ...
- BZOJ 1937: [Shoi2004]Mst 最小生成树 [二分图最大权匹配]
传送门 题意: 给一张无向图和一棵生成树,改变一些边的权值使生成树为最小生成树,代价为改变权值和的绝对值,求最小代价 线性规划的形式: $Min\quad \sum\limits_{i=1}^{m} ...
- [BZOJ 1937][Shoi2004]Mst 最小生成树
传送门 $ \color{red} {solution:} $ 对于每条树边\(i\),其边权只可能变小,对于非树边\(j\),其边权只可能变大,所以对于任意非树边覆盖的树边有 \(wi - di & ...
- MST最小生成树
首先,贴上一个很好的讲解贴: http://www.wutianqi.com/?p=3012 HDOJ 1233 还是畅通工程 http://acm.hdu.edu.cn/showproblem.ph ...
- [poj1679]The Unique MST(最小生成树)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28207 Accepted: 10073 ...
- UVA 1151 Buy or Build (MST最小生成树,kruscal,变形)
题意: 要使n个点之间能够互通,要使两点直接互通需要耗费它们之间的欧几里得距离的平方大小的花费,这说明每两个点都可以使其互通.接着有q个套餐可以选,一旦选了这些套餐,他们所包含的点自动就连起来了,所需 ...
随机推荐
- [转载]MySQL面试题
1.MySQL的复制原理以及流程基本原理流程,3个线程以及之间的关联:(1)主:binlog线程——记录下所有改变了数据库数据的语句,放进master上的binlog中:(2)从:io线程——在使用s ...
- Ubuntu下载磁力链接,torrent,迅雷链接
用ubuntu下载电影:磁力链接,torrent,迅雷链接 需要软件:Ktorent, Amule 安装软件: sudo apt-get install ktorrent sudo apt-get i ...
- HTML学习1-Dom之事件绑定
事件: 1.注册事件 a. <div onxxxx=””></div> b. document .onxxxx= function() //找到这个标签 2.this,触发 ...
- bcd引导Ubuntu
下面步骤就是创建Windows的启动项了. 以管理员身份打开CMD, 然后输入 bcdedit /create /d "ubuntu" /application bootsecto ...
- 基于Linux-3.9.4内核增加简单的时间片轮转功能
简单的时间片轮转多道程序内核代码 原创作品转载请注明出处https://github.com/mengning/linuxkernel/ 作者:sa18225465 一.安装 Linux-3.9.4 ...
- QT中的小细节
一 . QT4和QT5的区别(信号和槽):1. QT4: connect(button,SIGNAL(pressed()),this,SLOT(close())); /** * 优点 :写法简单 ...
- Java 的 java_home, path, classpath
java_home: 指定 jdk 的安装目录. 第三方软件 Eclipse / Tomcat 在 java_home 指定的目录下查找安装好的 jdk. path: 配置 jdk 的安装目录.在命令 ...
- Django之自带认证
自带登录实例 {% extends "layout/base.html" %} // 所有link {% block body %} <div id="contai ...
- 10分钟入门git简易教程
在注册了github账号之后,一度不知道该如何使用. 在仔细研究了github的官方说明文档.廖老师的教程.还有许多博主的文章之后,总算对github的操作和体系有了较为深刻的了解,还有这篇简单的入门 ...
- 超实用 2 ArrayList链表之 员工工资管理系统
package ArrayList的小程序; import java.io.*; import java.util.*; public class kkk { /** * 作者:Mr.fan * 功能 ...