PCA人脸识别的python实现
这几天看了看PCA及其人脸识别的流程,并在网络上搜相应的python代码,有,但代码质量不好,于是自己就重新写了下,对于att_faces数据集的识别率能达到92.5%~98.0%(40种类型,每种随机选5张训练,5张识别),全部代码如下,不到50行哦。
# -*- coding: utf-8 -*-
import numpy as np
import os, glob, random, cv2 def pca(data,k):
data = np.float32(np.mat(data))
rows,cols = data.shape #取大小
data_mean = np.mean(data,0) #求均值
Z = data - np.tile(data_mean,(rows,1))
D,V = np.linalg.eig(Z*Z.T ) #特征值与特征向量
V1 = V[:, :k] #取前k个特征向量
V1 = Z.T*V1
for i in xrange(k): #特征向量归一化
V1[:,i] /= np.linalg.norm(V1[:,i])
return np.array(Z*V1),data_mean,V1 def loadImageSet(folder=u'E:/迅雷下载/faceProcess/att_faces', sampleCount=5): #加载图像集,随机选择sampleCount张图片用于训练
trainData = []; testData = []; yTrain=[]; yTest = [];
for k in range(40):
folder2 = os.path.join(folder, 's%d' % (k+1))
data = [cv2.imread(d.encode('gbk'),0) for d in glob.glob(os.path.join(folder2, '*.pgm'))]
sample = random.sample(range(10), sampleCount)
trainData.extend([data[i].ravel() for i in range(10) if i in sample])
testData.extend([data[i].ravel() for i in range(10) if i not in sample])
yTest.extend([k]* (10-sampleCount))
yTrain.extend([k]* sampleCount)
return np.array(trainData), np.array(yTrain), np.array(testData), np.array(yTest) def main():
xTrain_, yTrain, xTest_, yTest = loadImageSet()
num_train, num_test = xTrain_.shape[0], xTest_.shape[0] xTrain,data_mean,V = pca(xTrain_, 50)
xTest = np.array((xTest_-np.tile(data_mean,(num_test,1))) * V) #得到测试脸在特征向量下的数据 yPredict =[yTrain[np.sum((xTrain-np.tile(d,(num_train,1)))**2, 1).argmin()] for d in xTest]
print u'欧式距离法识别率: %.2f%%'% ((yPredict == yTest).mean()*100) svm = cv2.SVM() #支持向量机方法
svm.train(np.float32(xTrain), np.float32(yTrain), params = {'kernel_type':cv2.SVM_LINEAR})
yPredict = [svm.predict(d) for d in np.float32(xTest)]
#yPredict = svm.predict_all(xTest.astype(np.float64))
print u'支持向量机识别率: %.2f%%' % ((yPredict == yTest).mean()*100) if __name__ =='__main__':
main()
PCA人脸识别的python实现的更多相关文章
- gabor变换人脸识别的python实现,att_faces数据集平均识别率99%
大家都说gabor做人脸识别是传统方法中效果最好的,这几天就折腾实现了下,网上的python实现实在太少,github上的某个版本还误导了我好几天,后来采用将C++代码封装成dll供python调用的 ...
- LBP人脸识别的python实现
这几天看了看LBP及其人脸识别的流程,并在网络上搜相应的python代码,有,但代码质量不好,于是自己就重新写了下,对于att_faces数据集的识别率能达到95.0%~99.0%(40种类型,每种随 ...
- iOS活体人脸识别的Demo和一些思路
代码地址如下:http://www.demodashi.com/demo/12011.html 之前公司项目需要,研究了一下人脸识别和活体识别,并运用免费的讯飞人脸识别,在其基础上做了二次开发,添加了 ...
- PCA人脸识别学习笔记---原理篇
前言 在PCA人脸识别中我们把一个人脸图片看做一个特征向量,PCA做的事情就是:找到这样一组基向量来表示已有的数据点,不仅仅是将高维度数据变成低维度数据,更能够找到最关键信息. 假设已有数据{xi} ...
- 机器学习笔记----四大降维方法之PCA(内带python及matlab实现)
大家看了之后,可以点一波关注或者推荐一下,以后我也会尽心尽力地写出好的文章和大家分享. 本文先导:在我们平时看NBA的时候,可能我们只关心球员是否能把球打进,而不太关心这个球的颜色,品牌,只要有3D效 ...
- PCA人脸识别
人脸数据来自http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html 实现代码和效果如下.由于图片数量有限(40*10),将原 ...
- 人脸检测? 对Python来说太简单, 调用dlib包就可以完成
"Dlib 是一个现代化的 C ++ 工具包,包含用于创建复杂软件的机器学习算法和工具 " .它使您能够直接在 Python 中运行许多任务,其中一个例子就是人脸检测. 安装 dl ...
- 百度Aip人脸识别之python代码
用python来做人脸识别代码量少 思路清晰, 在使用之前我们需要在我们的配置的编译器中通过pip install baidu-aip 即可 from aip import AipFace 就可以开 ...
- Eigenface与PCA人脸识别算法实验
简单的特征脸识别实验 实现特征脸的过程其实就是主成分分析(Principal Component Analysis,PCA)的一个过程.关于PCA的原理问题,它是一种数学降维的方法.是为了简化问题.在 ...
随机推荐
- 多线程应用-函数方式(thread)
多线程只能使用一颗CPU,无法发挥多核心的优势.计算密集型用python的多线程效果不明显的,I/O密集型才能看出效果,可以发挥多核优势. GIL是全局资源锁,所以,如果没有涉及到资源的调用,是不会体 ...
- DoraHacks的笔记
DoraHacks的笔记
- ASP.NET MVC 5 开发环境配置
Install-Package Ninject -Version 3.2.2 -ProjectName SportsStore.WebUIInstall-Package Ninject.Web.Com ...
- HTML5的新标签-整体布局
过去:<div class="header"> <div class="hgroup"> <h1>....</h1&g ...
- html操作
HTML(hyper text markup language): 超文本标记语言,标准通用标记语言下的一个应用. 超文本就是指页面内可以包含图片.连接.音乐.程序等非文字元素. 超文本标记语言的结构 ...
- javascript库概念与连缀
一.JavaScript 库 1.什么是javascript库: javascript库,说白了,就是把各种常用的代码片段,组织起来放在一个 js 文件里,组成一个包,这个包就是 JavaScript ...
- Jinja2 简明使用手册
@Jinja2 简明使用手册(转载) 介绍 Jinja是基于python的模板引擎,功能比较类似于于PHP的smarty,J2ee的Freemarker和velocity. 运行需求 Jinja2需要 ...
- NSKeyValueObserving.m
https://github.com/farcaller/cocotron/blob/af740de86c9bee84c59ffc74d27e5df9e22e1391/Foundation/NSKey ...
- 【CF917D】Stranger Trees
题目 看题解的时候才突然发现\(zky\)讲过这道题啊,我现在怕不是一个老年人了 众所周知矩阵树求得是这个 \[\sum_{T}\prod_{e\in T}w_e\] 而我们现在的这个问题有些鬼畜了, ...
- [luogu1600] 天天爱跑步
题面 直接写正解吧, 不想再写部分分了, 对于\(u\)和\(v\), 我们可以将它拆成两条路径, \(u\)到\(lca(u, v)\)和\(lca(u, v)\)到v, 在这里只分析从\(u\ ...