【NOI2007】社交网络

Description

在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题。在一个社交圈子里有n个人,人与人之间有不同程度的关系。我 们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两 个人之间的关系越密切。 
我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和t的联系提供了某种便利, 即这些结点对于s 和t之间的联系有一定的重要程度。我们可以通过统计经过一个结点v的最短路径的数目来衡量该结点在社交网络中的重要程度。 
考虑到两个结点A和B之间可能会有多条最短路径。我们修改重要程度的定义如下: 
令Cs,t表示从s到t的不同的最短路的数目,Cs,t(v)表示经过v从s到t的最短路的数目;则定义 
 
为结点v在社交网络中的重要程度。 
为了使I(v)和Cs,t(v)有意义,我们规定需要处理的社交网络都是连通的无向图,即任意两个结点之间都有一条有限长度的最短路径。 
现在给出这样一幅描述社交网络s的加权无向图,请你求出每一个结点的重要程度。

Input

输入中第一行有两个整数,n和m,表示社交网络中结点和无向边的数目。在无向图中,我们将所有结点从1到n进行编号。 
接下来m行,每行用三个整数a, b, c描述一条连接结点a和b,权值为c的无向边。注意任意两个结点之间最多有一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。

Output

输出包括n行,每行一个实数,精确到小数点后3位。第i行的实数表示结点i在社交网络中的重要程度。

Sample Input

4 4 
1 2 1 
2 3 1 
3 4 1 
4 1 1

Sample Output

1.000 
1.000 
1.000 
1.000

Hint

【样例说明】 
社交网络如下图所示。 

对于1号结点而言,只有2号到4号结点和4号到2号结点的最短路经过1号结点,而2号结点和4号结点之间的最短路又有2条。因而根据定义,1号结点的重要程度计算为1/2+1/2=1。由于图的对称性,其他三个结点的重要程度也都是1。 
【评分方法】 
本题没有部分分,仅当你的程序计算得出的各个结点的重要程度与标准输出相差不超过0.001时,才能得到测试点的满分,否则不得分。 
【数据规模和约定】 
50%的数据中:n ≤10,m ≤45 
100%的数据中:n ≤100,m ≤4 500,任意一条边的权值c是正整数,满足:1 ≤c ≤1 000。 
所有数据中保证给出的无向图连通,且任意两个结点之间的最短路径数目不超过10^10。

Source

图论 ,最短路, NOI

乍一看极难无比,再一看数据范围感觉很亲切但无从下手,然后发现n<=100,m又灰常大,所以用Floyd!
首先用floyd跑出所有最短路
然后用f[a][b]记录a->b最短路的数量。
显然当a,b有边且W[E(a,b)]==Shortest(a,b)时f[a][b]>=1,所以初值是1,其余初值为0
根据乘法、加法原理,得f[a][b]=初值+sigma(f[a][k]*f[k][b]) [Shortest(a,k)+Shorest(k,b)=Shortest(a,b)]
然后求解就行了。。。
 // It is made by XZZ
#include<cstdio>
#include<algorithm>
using namespace std;
#define rep(a,b,c) for(rg int a=b;a<=c;a++)
#define drep(a,b,c) for(rg int a=b;a>=c;a--)
#define erep(a,b) for(rg int a=fir[b];a;a=nxt[a])
#define il inline
#define rg register
#define vd void
typedef long long ll;
il int gi(){
rg int x=;rg char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<='')x=x*+ch-'',ch=getchar();
return x;
}
int F[][],FF[][];
ll f[][];
int main(){
rg int n=gi(),m=gi(),a,b;
rep(i,,n)rep(j,,n)if(i-j)F[i][j]=;
while(m--)a=gi(),b=gi(),F[a][b]=F[b][a]=FF[a][b]=FF[b][a]=gi();
rep(k,,n)rep(i,,n)rep(j,,n)F[i][j]=min(F[i][j],F[i][k]+F[k][j]);
rep(i,,n)rep(j,,n)if(F[i][j]==FF[i][j])f[i][j]=;
rep(k,,n)rep(i,,n)rep(j,,n)if(i-j&&j-k&&k-i&&F[i][j]==F[i][k]+F[k][j])f[i][j]+=f[i][k]*f[k][j];
rep(s,,n){
rg double ans=0.0;
rep(i,,n)rep(j,,n)
if(i-j&&j-s&&s-i&&F[i][j]==F[i][s]+F[s][j])
ans+=(double)f[s][i]*f[j][s]/f[i][j];
printf("%.3lf\n",ans);
}
return ;
}

【NOI2007】社交网络的更多相关文章

  1. BZOJ 1491 [NOI2007]社交网络

    1491: [NOI2007]社交网络 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1159  Solved: 660[Submit][Status] ...

  2. 图论(floyd算法):NOI2007 社交网络

    [NOI2007] 社交网络 ★★   输入文件:network1.in   输出文件:network1.out   简单对比 时间限制:1 s   内存限制:128 MB [问题描述] 在社交网络( ...

  3. BZOJ 1491: [NOI2007]社交网络( floyd )

    floyd...求最短路时顺便求出路径数. 时间复杂度O(N^3) ------------------------------------------------------------------ ...

  4. 1491: [NOI2007]社交网络

    1491: [NOI2007]社交网络 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 881  Solved: 518[Submit][Status] ...

  5. 洛谷 P2047 [NOI2007]社交网络 解题报告

    P2047 [NOI2007]社交网络 题目描述 在社交网络(\(social\) \(network\))的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有\ ...

  6. 【BZOJ1491】[NOI2007]社交网络 Floyd

    [BZOJ1491][NOI2007]社交网络 Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子 ...

  7. [BZOJ1491][NOI2007]社交网络 floyd

    1491: [NOI2007]社交网络 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2196  Solved: 1170[Submit][Status ...

  8. 洛谷——P2047 [NOI2007]社交网络

    P2047 [NOI2007]社交网络 $Floyd$,一眼看到就是他(博主是不小心瞄到了这个题的标签吧qwq) 这个题目只要预处理出$S$到$T$的最短路的条数即可,类似$Spfa$的更新方法 如果 ...

  9. [NOI2007]社交网络(最短路)

    [NOI2007]社交网络 Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子里有n个人,人与人之 ...

  10. BZOJ1491:1491: [NOI2007]社交网络

    1491: [NOI2007]社交网络 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2204  Solved: 1175[Submit][Status ...

随机推荐

  1. 使用CADisplayLink写秒表

    使用CADisplayLink写秒表 效果: 源码: StopWatch.h 与 StopWatch.m // // StopWatch.h // ShowTime // // Created by ...

  2. 铁乐学Python_day08_文件操作

    一.[基本的文件操作] 参数: 1.文件路径: 2.编码方式: 3.执行动作:(打开方式)只读,只写,追加,读写,写读! #1. 打开文件,得到文件句柄并赋值给一个变量 f = open('E:/Py ...

  3. (转)ParallaxOcclusionMapping( POM ) DX9(转)

    http://blog.csdn.net/xujiezhige/article/details/7326606

  4. 整体修改VS中C++工程和解决方案命名问题

    目标:将所有basestation相关的修改为PPPStream 首先,复制一份用于修改的解决方案文件夹,然后打开解决方案,如下图,左侧的两个basestation都重新命名为PPPStream. 第 ...

  5. 12-5 张雨RTCM3数据解码解不出的原因

    数据大小:75kB 时间12-4 原因:二进制数据乱码,未通过电文头检验 2018-12-10 08:44:05 张雨RTCM32-MSM4无法固定,连差分都没有

  6. PHP最全防止sql注入方法

    (1)mysql_real_escape_string -- 转义 SQL 语句中使用的字符串中的特殊字符,并考虑到连接的当前字符集 使用方法如下: $sql = "select count ...

  7. 【原创】python内存泄漏以及python flask框架莫名coredump

    1.python内存泄漏 今天在看服务器上的进程时,用top查的时候,发现一个一直跑的脚本程序内存竟然达到了1.6G,这个脚本我有印象,一开始仅占用20M左右,显然是内存泄漏了. 用gc和objgra ...

  8. 处理Account locked due to 217 failed logins的问题

    处理Account locked due to 217 failed logins的问题 [root@xxx1 ~]# scp 123.txt root@IP地址:/root Account lock ...

  9. js面向对象理解

    js面向对象理解 ECMAScript 有两种开发模式:1.函数式(过程化),2.面向对象(OOP).面向对象的语言有一个标志,那就是类的概念,而通过类可以创建任意多个具有相同属性和方法的对象.但是, ...

  10. zookeeper 快速入门

    分布式系统简介 在分布式系统中另一个需要解决的重要问题就是数据的复制.我们日常开发中,很多人会碰到一个问题:客户端C1更新了一个值K1由V1更新到V2.但是客户端C2无法立即读取到K的最新值.上面的例 ...