Maximum Subarray leetcode java
题目:
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle
题解:
这道题要求 求连续的数组值,加和最大。
试想一下,如果我们从头遍历这个数组。对于数组中的其中一个元素,它只有两个选择:
1. 要么加入之前的数组加和之中(跟别人一组)
2. 要么自己单立一个数组(自己单开一组)
所以对于这个元素应该如何选择,就看他能对哪个组的贡献大。如果跟别人一组,能让总加和变大,还是跟别人一组好了;如果自己起个头一组,自己的值比之前加和的值还要大,那么还是自己单开一组好了。
所以利用一个sum数组,记录每一轮sum的最大值,sum[i]表示当前这个元素是跟之前数组加和一组还是自己单立一组好,然后维护一个全局最大值即位答案。
代码如下;
1 public int maxSubArray(int[] A) {
2 int[] sum = new int[A.length];
3
4 int max = A[0];
5 sum[0] = A[0];
6
7 for (int i = 1; i < A.length; i++) {
8 sum[i] = Math.max(A[i], sum[i - 1] + A[i]);
9 max = Math.max(max, sum[i]);
}
return max;
}
同时发现,这道题是经典的问题,是1977布朗的一个教授提出来的。
http://en.wikipedia.org/wiki/Maximum_subarray_problem
并发现,这道题有两种经典解法,一个是:Kadane算法,算法复杂度O(n);另外一个是分治法:算法复杂度为O(nlogn)。
1. Kadane算法
代码如下:
1 public int maxSubArray(int[] A) {
2 int max_ending_here = 0;
3 int max_so_far = Integer.MIN_VALUE;
4
5 for(int i = 0; i < A.length; i++){
6 if(max_ending_here < 0)
7 max_ending_here = 0;
8 max_ending_here += A[i];
9 max_so_far = Math.max(max_so_far, max_ending_here);
}
return max_so_far;
}
2. 分治法:
代码如下:
1 public int maxSubArray(int[] A) {
2 return divide(A, 0, A.length-1);
3 }
4
5 public int divide(int A[], int low, int high){
6 if(low == high)
7 return A[low];
8 if(low == high-1)
9 return Math.max(A[low]+A[high], Math.max(A[low], A[high]));
int mid = (low+high)/2;
int lmax = divide(A, low, mid-1);
int rmax = divide(A, mid+1, high);
int mmax = A[mid];
int tmp = mmax;
for(int i = mid-1; i >=low; i--){
tmp += A[i];
if(tmp > mmax)
mmax = tmp;
}
tmp = mmax;
for(int i = mid+1; i <= high; i++){
tmp += A[i];
if(tmp > mmax)
mmax = tmp;
}
return Math.max(mmax, Math.max(lmax, rmax));
}
Reference:
http://en.wikipedia.org/wiki/Maximum_subarray_problem
http://www.cnblogs.com/statical/articles/3054483.html
http://blog.csdn.net/xshengh/article/details/12708291
Maximum Subarray leetcode java的更多相关文章
- Maximum Subarray - LeetCode
目录 题目链接 注意点 解法 小结 题目链接 Maximum Subarray - LeetCode 注意点 最大值有可能是正负数交替着出现 解法 解法一:一次遍历即可.当sum小于0的时候就重新开始 ...
- Maximum Subarray——LeetCode
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- LeetCode 53. Maximum Subarray(最大的子数组)
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- LeetCode 53. 最大子序和(Maximum Subarray)
53. 最大子序和 53. Maximum Subarray 题目描述 给定一个整数数组 nums,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. LeetCode53. M ...
- [Leetcode][Python]53: Maximum Subarray
# -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 53: Maximum Subarrayhttps://leetcode.co ...
- 53. Maximum Subarray【leetcode】
53. Maximum Subarray[leetcode] Find the contiguous subarray within an array (containing at least one ...
- [array] leetcode - 53. Maximum Subarray - Easy
leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...
- LeetCode: Maximum Subarray 解题报告
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...
- 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略
原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
随机推荐
- Python网络编程之socket应用
1 引言 本篇主要对Python下网络编程中用到的socket模块进行初步总结.首先从网络基础理论出发,介绍了TCP协议和UDP协议:然后总结了socket中的常用函数:最后通过实际代码展示基本函数的 ...
- Java反射机制demo(五)—获得并调用一个类中的方法
Java反射机制demo(五)—获得并调用一个类中的方法 这个demo在使用反射机制操作属性之前,主要原因是因为在.class文件字节码中,方法排在属性的前面. 1,获得一个类中的方法 先看一下方法和 ...
- MDP中值函数的求解
MDP概述 马尔科夫决策过程(Markov Decision Process)是强化学习(reinforcement learning)最基本的模型框架.它对序列化的决策过程做了很多限制.比如状态 ...
- JAVAEE——宜立方商城03:商品类目选择、Nginx端口或域名区分虚拟机、Nginx反向代理、负载均衡、keepalived实现高可用
1. 学习计划 第三天: 1.商品类目选择(EasyUI的tree实现) 2.图片上传 a) 图片服务器FastDFS(Nainx部分) 2. 商品类目选择 2.1. 原型 2.2. 功能分析 展示商 ...
- js包
1.base.js /*语法: $("选择器") 工厂函数 */ /*寻找页面中name属性值是haha的元素*/ $("[name='haha']&qu ...
- myeclipse 插件下载方式
myeclipse10,大家都知道,MyEclipse 中有一个烦人的 Software and Workspace center,这东西,加载特别慢,我用10版本基本是没有可能看到这个界面.更别说在 ...
- luoguP5105 不强制在线的动态快速排序 [官方?]题解 线段树 / set
不强制在线的动态快速排序 题解 算法一 按照题意模拟 维护一个数组,每次直接往数组后面依次添加\([l, r]\) 每次查询时,暴力地\(sort\)查询即可 复杂度\(O(10^9 * q)\),期 ...
- CF280C Game on Tree 期望
期望多少次操作,我们可以看做是染黑了多少节点 那么,我们可以用期望的线性性质,求出每个节点被染黑的概率之和(权值为$1$) 一个节点$u$被染黑仅跟祖先有关 我们把$u$到祖先的链抽出来 只要选取链上 ...
- 2809: [Apio2012]dispatching 可并堆 左偏树
https://www.lydsy.com/JudgeOnline/problem.php?id=2809 板子题wa了一下因为输出ans没有lld #include<iostream> ...
- DP Training(Updating)
感觉前面做了那么多$dp$全是自己想的还是太少啊…… 好像在LZT的博客上看到了不错的资源?赶紧开坑,以一句话题解为主 Codeforces 419B 第一题就开始盗图 由于只有一个交点,手玩一下发现 ...