题目:

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle

题解:

这道题要求 求连续的数组值,加和最大。

试想一下,如果我们从头遍历这个数组。对于数组中的其中一个元素,它只有两个选择:

1. 要么加入之前的数组加和之中(跟别人一组)

2. 要么自己单立一个数组(自己单开一组)

所以对于这个元素应该如何选择,就看他能对哪个组的贡献大。如果跟别人一组,能让总加和变大,还是跟别人一组好了;如果自己起个头一组,自己的值比之前加和的值还要大,那么还是自己单开一组好了。

所以利用一个sum数组,记录每一轮sum的最大值,sum[i]表示当前这个元素是跟之前数组加和一组还是自己单立一组好,然后维护一个全局最大值即位答案。

代码如下;

 1     public int maxSubArray(int[] A) {
 2         int[] sum = new int[A.length];
 3         
 4         int max = A[0];
 5         sum[0] = A[0];
 6  
 7         for (int i = 1; i < A.length; i++) {
 8             sum[i] = Math.max(A[i], sum[i - 1] + A[i]);
 9             max = Math.max(max, sum[i]);
         }
  
         return max;
     }

同时发现,这道题是经典的问题,是1977布朗的一个教授提出来的。

http://en.wikipedia.org/wiki/Maximum_subarray_problem

并发现,这道题有两种经典解法,一个是:Kadane算法,算法复杂度O(n);另外一个是分治法:算法复杂度为O(nlogn)。

1. Kadane算法

代码如下:

 1     public int maxSubArray(int[] A) {
 2         int max_ending_here = 0;
 3         int max_so_far = Integer.MIN_VALUE;
 4         
 5         for(int i = 0; i < A.length; i++){  
 6             if(max_ending_here < 0) 
 7                  max_ending_here = 0;  
 8             max_ending_here += A[i];  
 9             max_so_far = Math.max(max_so_far, max_ending_here);   
         }  
         return max_so_far; 
     }

2. 分治法:

代码如下:

 1     public int maxSubArray(int[] A) {
 2          return divide(A, 0, A.length-1); 
 3     }
 4     
 5   public int divide(int A[], int low, int high){  
 6         if(low == high)
 7             return A[low];  
 8         if(low == high-1)  
 9             return Math.max(A[low]+A[high], Math.max(A[low], A[high]));
             
         int mid = (low+high)/2;  
         int lmax = divide(A, low, mid-1);  
         int rmax = divide(A, mid+1, high); 
         
         int mmax = A[mid];  
         int tmp = mmax;  
         for(int i = mid-1; i >=low; i--){  
             tmp += A[i];  
             if(tmp > mmax)
                 mmax = tmp;  
         }  
         tmp = mmax;  
         for(int i = mid+1; i <= high; i++){  
             tmp += A[i];  
             if(tmp > mmax)
                 mmax = tmp;  
         }  
         return Math.max(mmax, Math.max(lmax, rmax));  
           
     } 

Reference:

http://en.wikipedia.org/wiki/Maximum_subarray_problem

http://www.cnblogs.com/statical/articles/3054483.html

http://blog.csdn.net/xshengh/article/details/12708291

Maximum Subarray leetcode java的更多相关文章

  1. Maximum Subarray - LeetCode

    目录 题目链接 注意点 解法 小结 题目链接 Maximum Subarray - LeetCode 注意点 最大值有可能是正负数交替着出现 解法 解法一:一次遍历即可.当sum小于0的时候就重新开始 ...

  2. Maximum Subarray——LeetCode

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  3. LeetCode 53. Maximum Subarray(最大的子数组)

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  4. LeetCode 53. 最大子序和(Maximum Subarray)

    53. 最大子序和 53. Maximum Subarray 题目描述 给定一个整数数组 nums,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. LeetCode53. M ...

  5. [Leetcode][Python]53: Maximum Subarray

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 53: Maximum Subarrayhttps://leetcode.co ...

  6. 53. Maximum Subarray【leetcode】

    53. Maximum Subarray[leetcode] Find the contiguous subarray within an array (containing at least one ...

  7. [array] leetcode - 53. Maximum Subarray - Easy

    leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...

  8. LeetCode: Maximum Subarray 解题报告

    Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...

  9. 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略

    原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

随机推荐

  1. Python网络编程之socket应用

    1 引言 本篇主要对Python下网络编程中用到的socket模块进行初步总结.首先从网络基础理论出发,介绍了TCP协议和UDP协议:然后总结了socket中的常用函数:最后通过实际代码展示基本函数的 ...

  2. Java反射机制demo(五)—获得并调用一个类中的方法

    Java反射机制demo(五)—获得并调用一个类中的方法 这个demo在使用反射机制操作属性之前,主要原因是因为在.class文件字节码中,方法排在属性的前面. 1,获得一个类中的方法 先看一下方法和 ...

  3. MDP中值函数的求解

    MDP概述   马尔科夫决策过程(Markov Decision Process)是强化学习(reinforcement learning)最基本的模型框架.它对序列化的决策过程做了很多限制.比如状态 ...

  4. JAVAEE——宜立方商城03:商品类目选择、Nginx端口或域名区分虚拟机、Nginx反向代理、负载均衡、keepalived实现高可用

    1. 学习计划 第三天: 1.商品类目选择(EasyUI的tree实现) 2.图片上传 a) 图片服务器FastDFS(Nainx部分) 2. 商品类目选择 2.1. 原型 2.2. 功能分析 展示商 ...

  5. js包

    1.base.js /*语法: $("选择器") 工厂函数 */       /*寻找页面中name属性值是haha的元素*/   $("[name='haha']&qu ...

  6. myeclipse 插件下载方式

    myeclipse10,大家都知道,MyEclipse 中有一个烦人的 Software and Workspace center,这东西,加载特别慢,我用10版本基本是没有可能看到这个界面.更别说在 ...

  7. luoguP5105 不强制在线的动态快速排序 [官方?]题解 线段树 / set

    不强制在线的动态快速排序 题解 算法一 按照题意模拟 维护一个数组,每次直接往数组后面依次添加\([l, r]\) 每次查询时,暴力地\(sort\)查询即可 复杂度\(O(10^9 * q)\),期 ...

  8. CF280C Game on Tree 期望

    期望多少次操作,我们可以看做是染黑了多少节点 那么,我们可以用期望的线性性质,求出每个节点被染黑的概率之和(权值为$1$) 一个节点$u$被染黑仅跟祖先有关 我们把$u$到祖先的链抽出来 只要选取链上 ...

  9. 2809: [Apio2012]dispatching 可并堆 左偏树

    https://www.lydsy.com/JudgeOnline/problem.php?id=2809 板子题wa了一下因为输出ans没有lld #include<iostream> ...

  10. DP Training(Updating)

    感觉前面做了那么多$dp$全是自己想的还是太少啊…… 好像在LZT的博客上看到了不错的资源?赶紧开坑,以一句话题解为主 Codeforces 419B 第一题就开始盗图 由于只有一个交点,手玩一下发现 ...