如果某个格子的积水量超过了该格子的某个挡板高度,那么挡板另一端的积水量就会与其相同。看起来是一个不断合并的过程,考虑并查集。枚举深度,维护每个连通块内的方案数,深度超过某挡板高度时,将两端的连通块合并,即方案数相乘。再加上该连通块均为当前深度的这种方案。这样复杂度即为O(nmHα)或O(n2m2α)。

  注意到每次更新所有连通块的答案并没有意义,于是可以进一步优化,对每个连通块存储其已被更新到的深度,需要将其合并时再实际更新。复杂度即为O(nmα)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1000010
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,h,fa[N],ans[N],cur[N],t;
struct data
{
int x,y,z;
bool operator <(const data&a) const
{
return z<a.z;
}
}edge[N];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int trans(int x,int y){return (x-)*m+y;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5101.in","r",stdin);
freopen("bzoj5101.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),h=read();
for (int i=;i<=n*m;i++) fa[i]=i,ans[i]=;
for (int i=;i<=n;i++)
for (int j=;j<m;j++)
t++,edge[t].x=trans(i,j),edge[t].y=trans(i,j+),edge[t].z=read();
for (int i=;i<n;i++)
for (int j=;j<=m;j++)
t++,edge[t].x=trans(i,j),edge[t].y=trans(i+,j),edge[t].z=read();
sort(edge+,edge+t+);
for (int i=;i<=t;i++)
{
int p=find(edge[i].x),q=find(edge[i].y);
if (p!=q)
{
ans[p]+=edge[i].z-cur[p];
ans[q]+=edge[i].z-cur[q];
fa[q]=p;ans[p]=1ll*ans[p]*ans[q]%P;cur[p]=edge[i].z;
}
}
cout<<(ans[find()]+h-cur[find()])%P;
return ;
}

BZOJ5101 POI2018Powódź(并查集)的更多相关文章

  1. 【BZOJ5101】[POI2018]Powód 并查集

    [BZOJ5101][POI2018]Powód Description 在地面上有一个水箱,它的俯视图被划分成了n行m列个方格,相邻两个方格之间有一堵厚度可以忽略不计的墙,水箱与外界之间有一堵高度无 ...

  2. [bzoj5101][POI2018]Powódź_并查集

    Powódź bzoj-5101 POI-2018 题目大意:在地面上有一个水箱,它的俯视图被划分成了$n$行$m$列个方格,相邻两个方格之间有一堵厚度可以忽略不计的墙,水箱与外界之间有一堵高度无穷大 ...

  3. BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]

    4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...

  4. 关押罪犯 and 食物链(并查集)

    题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值"( ...

  5. 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

    图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...

  6. bzoj1854--并查集

    这题有一种神奇的并查集做法. 将每种属性作为一个点,每种装备作为一条边,则可以得到如下结论: 1.如果一个有n个点的连通块有n-1条边,则我们可以满足这个连通块的n-1个点. 2.如果一个有n个点的连 ...

  7. [bzoj3673][可持久化并查集 by zky] (rope(可持久化数组)+并查集=可持久化并查集)

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

  8. [bzoj3123][sdoi2013森林] (树上主席树+lca+并查集启发式合并+暴力重构森林)

    Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...

  9. 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1878  Solved: 846[Submit][Status ...

随机推荐

  1. cadence allegro16.6 pcb文件转pads pcb文件方法教程

    在pcb设计工作中,有时会被要求将pcb文件转成其他软件的格式,pcb Allegro装Pads的方法如下. 在转换的过程中我们需要用到三种软件,ad.pads.allegro.转换的流程是:alle ...

  2. 【转载】钉钉开发c#帮助类 获取用户信息 DingHelper.cs

    using System;using System.Collections.Generic;using System.Configuration;using System.Linq;using Sys ...

  3. C# 连接MongoDB,含用户验证

    配置文件中链接地址:mongodb://test:123456@192.168.168.186:9999/temp 读取配置文件: /// <summary> /// 构造函数 /// & ...

  4. halcon二 图像校正

    1.get_image_size(Image : : : Width, Height) 返回图像的尺寸. 2.parameters_image_to_world_plane_centered (Cam ...

  5. SICP读书笔记 3.2

    SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...

  6. Leetcode_6. Zigzag convertion

    6. Zigzag convertion 对输入的字符串做锯齿形变换,并输出新的字符串,所谓zigzag变化如下图所示. 将"ABCDEFGHIJKL"做4行的锯齿变换,新的字符串 ...

  7. 最新Python笔试题2017 涵盖知识面广泛

    引言 想找一份Python开发工作吗?那你很可能得证明自己知道如何使用Python.下面这些问题涉及了与Python相关的许多技能,问题的关注点主要是语言本身,不是某个特定的包或模块.每一个问题都可以 ...

  8. Codeforces Round #157 (Div. 1) B. Little Elephant and Elections 数位dp+搜索

    题目链接: http://codeforces.com/problemset/problem/258/B B. Little Elephant and Elections time limit per ...

  9. angularJS1笔记-(16)-模块里的constant、value、run

    index.html: <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...

  10. sleep与信号唤醒的问题 & 内核对信号的处理方式 & udelay

    http://www.cnblogs.com/charlesblc/p/6277848.html 注意,sleep是会被信号唤醒的.   sleep函数:#include <unistd.h&g ...