跳转链接

题目大意

题目中要求的是从1号点到n号点所需要的最短时间, 一秒可以走 \(2^k\) 个距离

给定的有向图的边边权都是1.

问题分析

由于一秒可以走 \(2^k\) 个距离,因此题目转化为寻找两个点之间的距离为\(2^k\)的点对,并把边权(代表时间)赋值为1, 由于给定边权(指路径长度)都是1,

因此我们可以采用dp的思想,长度为\(2^K\)的路径可以由两个\(2^{k-1}\)的路径组合而成,至于为什么不考虑其他的组合方式,原因是初始边权都为1,如果能由其他组合方式组合而成,那么一定可以由两个\(2^{k-1}\)的路径组合而成.所以我们只需要先求出所有距离为\(2^k\)的点对,并把他们两个的时间边权赋值为1然后求最短路即可.

AC_CODE

#include <cstring>
#include <iostream> const int N = 55;
int n, m, dist[N][N], dis[N];
bool g[N][N][64], st[N]; int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cin >> n >> m;
memset(dist, 0x3f, sizeof dist);
memset(dis, 0x3f, sizeof dis);
while(m --) {
int a, b;
std::cin >> a >> b;
dist[a][b] = 1;
g[a][b][0] = true;
}
for(int k = 1; k <= 64; k ++ )
for(int i = 1; i <= n; i ++ )
for(int t = 1; t <= n; t ++ )
for(int j = 1; j <= n; j ++ ) {
if(g[i][t][k - 1] && g[t][j][k - 1]) {
g[i][j][k] = true;
dist[i][j] = 1;
}
} dis[1] = 0;
for(int i = 0; i < n; i ++ ) {
int t = 0;
for(int j = 1; j <= n; j ++ )
if(!st[j] && (!t || dis[j] < dis[t]))
t = j;
st[t] = true;
for(int j = 1; j <= n; j ++ )
dis[j] = std::min(dis[j], dis[t] + dist[t][j]);
}
std::cout << dis[n]; return 0;
}

Luogu_P1613跑路的更多相关文章

  1. [題解]luogu_P1613跑路(最短路/倍增)

    首先要知道不能跑最短路,因為只有整2^k才能一秒到達,和倍增有關 所以我們想知道任意兩點間能否存在一條2^k長度的路徑,數據很小,可以考慮floyd 把倍增和floyd結合起來考慮發現如果i到k,k到 ...

  2. TM4C123G红外触摸屏:开发板好不容易实现了原理,放到专家设计的板子上无法运行,于是专家跑路项目黄了

    使用TI的TM4C123G LaunchPad开发板,USB接口,来对同样的芯片进行烧写. 我们只用烧写那一块功能,不用另外一个芯片的开发功能,需要跳线   源码项目:   从官方网站TM4C123G ...

  3. 估值十亿美元、1.5亿用户,公司CEO却跑路了

    转载这篇文章是觉得配图非常好玩的,文章的真实性有待证明 年收益3600万美元的.曾经拥有高口碑产品的Evernote,却正在把一手好牌打烂,距离IPO越来越远,屡屡被业界唱衰. "独角兽公司 ...

  4. 洛谷P1613 跑路

    P1613 跑路 176通过 539提交 题目提供者该用户不存在 标签倍增动态规划 难度普及+/提高 提交该题 讨论 题解 记录 最新讨论 这个题的数据.. 题意问题 表意 题目描述 小A的工作不仅繁 ...

  5. 编程从入门到提高,然后放弃再跑路(Java)

    1.Java入门篇 1.1 基础入门和面向对象 1.1.1 编程基础 [01] Java语言的基本认识 [02] 类和对象 [03] 类的结构和创建对象 [04] 包和访问权限修饰符 [05] 利用p ...

  6. Luogu1613 跑路

    题目描述 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟 ...

  7. 干货,不小心执行了rm -f,除了跑路,如何恢复?

    前言 每当我们在生产环境服务器上执行rm命令时,总是提心吊胆的,因为一不小心执行了误删,然后就要准备跑路了,毕竟人不是机器,更何况机器也有bug,呵呵. 那么如果真的删除了不该删除的文件,比如数据库. ...

  8. 理解Linux文档的默认安全机制、隐藏属性、特殊权限,妈妈在也不用担心你从删库到跑路!!!

    写在前面 前面的章节 详解Linux文档属性.拥有者.群组.权限.差异,介绍了文档的基本权限,包括读写执行(r,w,x),还有文档若干的属性,包括是否为目录(d).文件(-).链接文件(l).拥有者. ...

  9. Oracle删库跑路

    --10g R2 startup mount exclusive restrict; alter system enable restricted session; drop database; -- ...

随机推荐

  1. 「AHOI2013」 差异

    知识点: SA,线段树,单调栈 原题面 Loj Luogu 题意简述 给定一长度为 \(n\) 的字符串 \(S\),令 \(T_i\) 表示从第 \(i\) 个字符开始的后缀,求: \[\sum_{ ...

  2. 定义制造业操作(定义 MES/MOM 系统)

    定义制造业操作(定义 MES/MOM 系统) 制造业操作包含众多工厂级活动,涉及设备(定义.使用.时间表和维护).材料(识别.属性.位置和状态).人员(资格.可用性和时间表),以及这些资源与包含其信息 ...

  3. 云南农职《JavaScript交互式网页设计》 综合机试试卷③——实现二级分类菜单

    一.语言和环境 实现语言:HTML,CSS,JavaScript,JQuery. 开发环境:HBuilder. 二.题目(100分): 使用Jquery和JavaScript实现二级分类菜单管理 点击 ...

  4. Linux常用命令,新手可以看看

    最近在温习了一些linux的命令,这里总结一下,博主使用的系统是Ubuntu,版本如下: 由于博主是做开发的,所有linux只会一些常用的命令,跟那些专业linux大牛当前没的比,为什么Ubuntu而 ...

  5. STL(1)vector

    STL(1) 1.vector vector是vector直译为"向量",一般说成"变长数组",也就是长度根据需要而自动改变的数组,有些题目需要开很多数组,往往 ...

  6. Appium服务器初始化参数(Capability)

    原文:https://blog.csdn.net/lilongsy/article/details/83010101 appium官方说明:https://appium.io/docs/cn/writ ...

  7. Linux下Tomcat启动、停止、重新启动

    在Linux系统下,重启Tomcat使用命令操作的! 1.首先,进入Tomcat下的bin目录,${CATALINA_HOME}代表tomcat的安装路径 进入Tomcat安装目录: cd ${CAT ...

  8. 老旧业务重构案例——IM系统如何设计

    一年半之前刚来到这个团队,便遭遇了一次挑战: 当时有个CRM系统,老是出问题,之前大的优化进行了4次小的优化进行了10多次,要么BUG重复出现,要么性能十分拉胯,总之体验是否糟糕!技术团队因此受到了诸 ...

  9. 转雅虎web前端网站优化 34条军规

    雅虎给出了优化网站加载速度的34条法则(包括Yslow规则22条) 详细说明,下载转发 ponytail 的译文 1.Minimize HTTP Requests 减少HTTP请求 图片.css.sc ...

  10. springboot打包第三方jar包是失败

    在项目开发时有时我们需要引入一些在maven仓库中不存在的包 一.配置maven环境变量 在path环境变量中添加 %maven_home%\bin (window10环境下) cmd界面输入 mvn ...