JAVA8学习——Stream底层的实现二(学习过程)
继续深入Stream的底层实现过程
2.spliterator()
接上 https://www.cnblogs.com/bigbaby/p/12159495.html
我们这次回到最开始源码分析的地方
public static <T> Spliterator<T> spliterator(Collection<? extends T> c,
int characteristics) {
return new IteratorSpliterator<>(Objects.requireNonNull(c),
characteristics);
}
IteratorSpliterator 在Spliterators中有一个静态实现:
static final int BATCH_UNIT = 1 << 10; // batch array size increment
static final int MAX_BATCH = 1 << 25; // max batch array size;
private final Collection<? extends T> collection; // null OK
private Iterator<? extends T> it;
private final int characteristics;
private long est; // size estimate
private int batch; // batch size for splits
/**
* Creates a spliterator using the given given
* collection's {@link java.util.Collection#iterator()) for traversal,
* and reporting its {@link java.util.Collection#size()) as its initial
* size.
*
* @param c the collection
* @param characteristics properties of this spliterator's
* source or elements.
*/
public IteratorSpliterator(Collection<? extends T> collection, int characteristics) {
this.collection = collection;
this.it = null;
this.characteristics = (characteristics & Spliterator.CONCURRENT) == 0
? characteristics | Spliterator.SIZED | Spliterator.SUBSIZED
: characteristics;
}
/**
* Creates a spliterator using the given iterator
* for traversal, and reporting the given initial size
* and characteristics.
*
* @param iterator the iterator for the source
* @param size the number of elements in the source
* @param characteristics properties of this spliterator's
* source or elements.
*/
public IteratorSpliterator(Iterator<? extends T> iterator, long size, int characteristics) {
this.collection = null;
this.it = iterator;
this.est = size;
this.characteristics = (characteristics & Spliterator.CONCURRENT) == 0
? characteristics | Spliterator.SIZED | Spliterator.SUBSIZED
: characteristics;
}
/**
* Creates a spliterator using the given iterator
* for traversal, and reporting the given initial size
* and characteristics.
*
* @param iterator the iterator for the source
* @param characteristics properties of this spliterator's
* source or elements.
*/
public IteratorSpliterator(Iterator<? extends T> iterator, int characteristics) {
this.collection = null;
this.it = iterator;
this.est = Long.MAX_VALUE;
this.characteristics = characteristics & ~(Spliterator.SIZED | Spliterator.SUBSIZED);
}
@Override
public Spliterator<T> trySplit() {
/*
* Split into arrays of arithmetically increasing batch
* sizes. This will only improve parallel performance if
* per-element Consumer actions are more costly than
* transferring them into an array. The use of an
* arithmetic progression in split sizes provides overhead
* vs parallelism bounds that do not particularly favor or
* penalize cases of lightweight vs heavyweight element
* operations, across combinations of #elements vs #cores,
* whether or not either are known. We generate
* O(sqrt(#elements)) splits, allowing O(sqrt(#cores))
* potential speedup.
*/
Iterator<? extends T> i;
long s;
if ((i = it) == null) {
i = it = collection.iterator();
s = est = (long) collection.size();
}
else
s = est;
if (s > 1 && i.hasNext()) {
int n = batch + BATCH_UNIT;
if (n > s)
n = (int) s;
if (n > MAX_BATCH)
n = MAX_BATCH;
Object[] a = new Object[n];
int j = 0;
do { a[j] = i.next(); } while (++j < n && i.hasNext());
batch = j;
if (est != Long.MAX_VALUE)
est -= j;
return new ArraySpliterator<>(a, 0, j, characteristics);
}
return null;
}
@Override
public void forEachRemaining(Consumer<? super T> action) {
if (action == null) throw new NullPointerException();
Iterator<? extends T> i;
if ((i = it) == null) {
i = it = collection.iterator();
est = (long)collection.size();
}
i.forEachRemaining(action);
}
@Override
public boolean tryAdvance(Consumer<? super T> action) {
if (action == null) throw new NullPointerException();
if (it == null) {
it = collection.iterator();
est = (long) collection.size();
}
if (it.hasNext()) {
action.accept(it.next());
return true;
}
return false;
}
@Override
public long estimateSize() {
if (it == null) {
it = collection.iterator();
return est = (long)collection.size();
}
return est;
}
@Override
public int characteristics() { return characteristics; }
@Override
public Comparator<? super T> getComparator() {
if (hasCharacteristics(Spliterator.SORTED))
return null;
throw new IllegalStateException();
}
}
提供给了 几种构造方法。
就直接返回了IteratorSpliterator 对象
然后StreamSupport提供了stream方法。调用了spliterator()。上面已经获取了这个参数。
default Stream<E> stream() {
return StreamSupport.stream(spliterator(), false);
}
如下实现:
/**
* Creates a new sequential or parallel {@code Stream} from a
* {@code Spliterator}.
*
* <p>The spliterator is only traversed, split, or queried for estimated
* size after the terminal operation of the stream pipeline commences.
*
* <p>It is strongly recommended the spliterator report a characteristic of
* {@code IMMUTABLE} or {@code CONCURRENT}, or be
* <a href="../Spliterator.html#binding">late-binding</a>. Otherwise,
* {@link #stream(java.util.function.Supplier, int, boolean)} should be used
* to reduce the scope of potential interference with the source. See
* <a href="package-summary.html#NonInterference">Non-Interference</a> for
* more details.
*
* @param <T> the type of stream elements
* @param spliterator a {@code Spliterator} describing the stream elements
* @param parallel if {@code true} then the returned stream is a parallel
* stream; if {@code false} the returned stream is a sequential
* stream.
* @return a new sequential or parallel {@code Stream}
*/
public static <T> Stream<T> stream(Spliterator<T> spliterator, boolean parallel) {
Objects.requireNonNull(spliterator);
return new ReferencePipeline.Head<>(spliterator,
StreamOpFlag.fromCharacteristics(spliterator),
parallel);
}
这里又出现了一个 ReferencePipeline.Head<>()
用于描述管道的中间阶段,或者管道的中间流阶段。
ReferencePipeline extends-> AbstractPipeline
跟!继续往里跟!
感想:记录
记录,笔记。记录你的理解。过一段时间,有些遗忘的时候,往回看一看。特别是这种不是引用型的代码.就算在实际开发当中,也不会去看源码的。
通过记录,去给别人讲一遍。你的理解会更好、
因为底层的代码和引用型的代码。学习方式是不一样的。
很多人说 工作几年之后就剩下增删改查的东西了。 其他底层的东西都没有去留住。
现在学习的这些东西就是底层的这些东西。建议:在学习过程中,把这些给记录下来。真正变成自己的一部分。
还有就是千万不要去死记硬背。背下来的东西肯定会忘掉。用你的知识体系去理解你学到的这些知识点。
ReferencePipeline
ReferencePipeline含有stream中是及其重要的方法stream,filter,map,等。
/**
* Abstract base class for an intermediate pipeline stage or pipeline source
* stage implementing whose elements are of type {@code U}.
抽象的基础类, 管道阶段 或者 管道源阶段的 统一成一个ReferencePipeline
(将流的两种阶段合并起来了。)
*
* @param <P_IN> type of elements in the upstream source
* @param <P_OUT> type of elements in produced by this stage
*
* @since 1.8
*/
abstract class ReferencePipeline<P_IN, P_OUT>
extends AbstractPipeline<P_IN, P_OUT, Stream<P_OUT>>
implements Stream<P_OUT> {
}
//继承了AbstractPipeline 非常重要。
//实现了 Stream 接口
ReferencePipeline(Supplier<? extends Spliterator<?>> source,
int sourceFlags, boolean parallel) {
super(source, sourceFlags, parallel);
}
第一个构造方法,一定是构造 源,阶段
ReferencePipeline.Head
Head是ReferencePipeline的内部类
这个类是为了处理 源阶段 和中间阶段,的区别。
1.ReferencePipeline表示流的源阶段和中间阶段
2.ReferencePipeline.Head表示流的源阶段,
二者大部分属性的设定上是类似的。但是一些特定属性的值不一样。如果说
/**
* Source stage of a ReferencePipeline.
*
* @param <E_IN> type of elements in the upstream source
上流源,元素的类型
* @param <E_OUT> type of elements in produced by this stage
这个阶段所生成的类型
* @since 1.8
*/
static class Head<E_IN, E_OUT> extends ReferencePipeline<E_IN, E_OUT> {
}
AbstractPipeline
ReferencePipeline的父类,最底层的实现类 (先来看Doc)
/**
* Abstract base class for "pipeline" classes, which are the core
* implementations of the Stream interface and its primitive specializations.
* Manages construction and evaluation of stream pipelines.
这个抽象的pipeline的基类,是流接口及其核心特化的核心实现。
管理:计算,构建,评估。
*
* <p>An {@code AbstractPipeline} represents an initial portion of a stream
* pipeline, encapsulating a stream source and zero or more intermediate
* operations. The individual {@code AbstractPipeline} objects are often
* referred to as <em>stages</em>, where each stage describes either the stream
* source or an intermediate operation.
一个AbstractPipeline 表示了 初始的部分。
封装了一个源的 0个或者多个中间操作。
每一个单个的AbstractPipeline对象,通常被叫做 “阶段”、
每一个阶段,要么描述的是源,要么描述的是中间操作。
*
* <p>A concrete intermediate stage is generally built from an
* {@code AbstractPipeline}, a shape-specific pipeline class which extends it
* (e.g., {@code IntPipeline}) which is also abstract, and an operation-specific
* concrete class which extends that. {@code AbstractPipeline} contains most of
* the mechanics of evaluating the pipeline, and implements methods that will be
* used by the operation; the shape-specific classes add helper methods for
* dealing with collection of results into the appropriate shape-specific
* containers.
一个具体的中间阶段,通常是通过一个AbstractPipeline来构建的。这是一个形状特化的管道类来继承了它。
如 IntPipeline 。。等等、
AbstractPipeline包含了大量的 特换的方法,
避免了自己装箱和拆箱的操作。
*
* <p>After chaining a new intermediate operation, or executing a terminal
* operation, the stream is considered to be consumed, and no more intermediate
* or terminal operations are permitted on this stream instance.
当链接一个新的中间操作。 在一个中间操作 或者 终止操作 之后。这个流就会被认为:被消费掉了。
那么这个被消费的了流。已经不能再继续的执行任何的操作了。
*
* @implNote
* <p>For sequential streams, and parallel streams without
* <a href="package-summary.html#StreamOps">stateful intermediate
* operations</a>, parallel streams, pipeline evaluation is done in a single
* pass that "jams" all the operations together. For parallel streams with
* stateful operations, execution is divided into segments, where each
* stateful operations marks the end of a segment, and each segment is
* evaluated separately and the result used as the input to the next
* segment. In all cases, the source data is not consumed until a terminal
* operation begins.
对于串行流 以及没有状态的中间操作的 并行流。 管道的计算是在单个的一次的操作当中完成的。
并且每个管道会将每个元素的所有操作,一次全部执行。然后才去执行下一个元素.
所以存在 “短路”操作。
对于有状态的并行流。会被分为多个有标识的 段。
每个段都会有输入,然后有输出。
输出会被用到下一个段。
然后遇到终止操作的时候,这个流才会被消费。
*
* @param <E_IN> type of input elements
* @param <E_OUT> type of output elements
* @param <S> type of the subclass implementing {@code BaseStream}
* @since 1.8
*/
abstract class AbstractPipeline<E_IN, E_OUT, S extends BaseStream<E_OUT, S>>
extends PipelineHelper<E_OUT> implements BaseStream<E_OUT, S> {
}
构造方法 (最底层的构造)
/**
* Constructor for the head of a stream pipeline.
*
* @param source {@code Supplier<Spliterator>} describing the stream source
* @param sourceFlags The source flags for the stream source, described in
* {@link StreamOpFlag}
* @param parallel True if the pipeline is parallel
*/
AbstractPipeline(Supplier<? extends Spliterator<?>> source,
int sourceFlags, boolean parallel) {
this.previousStage = null;
this.sourceSupplier = source;
this.sourceStage = this;
this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK;
// The following is an optimization of:
// StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE);
this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE;
this.depth = 0;
this.parallel = parallel;
}
往上返回,往上返回,往上返回。回到自己写的程序上。(目前,流源已经构建好了。)
3. forEach()方法
forEach()在stream接口中的定义
/**
* Performs an action for each element of this stream.
对流中每一个元素执行传入的action
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal
* operation</a>.
这是一个终止操作
*
* <p>The behavior of this operation is explicitly nondeterministic.
* For parallel stream pipelines, this operation does <em>not</em>
* guarantee to respect the encounter order of the stream, as doing so
* would sacrifice the benefit of parallelism. For any given element, the
* action may be performed at whatever time and in whatever thread the
* library chooses. If the action accesses shared state, it is
* responsible for providing the required synchronization.
这个操作的行为是不确定的。
对于并行流管道来说,这个操作并不会保证 流中元素的顺序。
因为如果这样做的话,就会牺牲并行的优势。
对于任何给定的元素,动作会在任何的时间在任何的线程上执行。
如果这个动作选择了共享的状态,那么这个动作就要提供同步的动作。
(可以多运行几下程序看看结果。)
*
* @param action a <a href="package-summary.html#NonInterference">
* non-interfering</a> action to perform on the elements
*/
void forEach(Consumer<? super T> action);
forEach()的两个具体实现
1. 在Head中
(被源操作执行的时候,默认调用 Head里面的实现)
// Optimized sequential terminal operations for the head of the pipeline
@Override
public void forEach(Consumer<? super E_OUT> action) {
if (!isParallel()) {
sourceStageSpliterator().forEachRemaining(action);
}
else {
super.forEach(action);
}
}
2. 在ReferencePipeline中。
(执行中间操作的时候,默认执行ReferencePipeline里的实现)
// Terminal operations from Stream
@Override
public void forEach(Consumer<? super P_OUT> action) {
evaluate(ForEachOps.makeRef(action, false));
}
forEach()的实现
// Optimized sequential terminal operations for the head of the pipeline
@Override
public void forEach(Consumer<? super E_OUT> action) {
if (!isParallel()) {
sourceStageSpliterator().forEachRemaining(action);
}
else {
super.forEach(action);
}
}
forEach 调用了sourceStageSpliterator() 和 forEachRemaining(action)
sourceStageSpliterator()
/**
* Gets the source stage spliterator if this pipeline stage is the source
* stage. The pipeline is consumed after this method is called and
* returns successfully.
*
* @return the source stage spliterator
* @throws IllegalStateException if this pipeline stage is not the source
* stage.
*/
@SuppressWarnings("unchecked")
final Spliterator<E_OUT> sourceStageSpliterator() {
if (this != sourceStage)
throw new IllegalStateException();
if (linkedOrConsumed)
throw new IllegalStateException(MSG_STREAM_LINKED);
linkedOrConsumed = true;
if (sourceStage.sourceSpliterator != null) {
@SuppressWarnings("unchecked")
Spliterator<E_OUT> s = sourceStage.sourceSpliterator;
sourceStage.sourceSpliterator = null;
return s;
}
else if (sourceStage.sourceSupplier != null) {
@SuppressWarnings("unchecked")
Spliterator<E_OUT> s = (Spliterator<E_OUT>) sourceStage.sourceSupplier.get();
sourceStage.sourceSupplier = null;
return s;
}
else {
throw new IllegalStateException(MSG_CONSUMED);
}
}
forEachRemaining(Consumer<? super T> action)
forEachRemaining的实现就比较多了。这里追到了Iterator类中的forEachRemaining(Consumer<? super T> action)的实现
追到最后:还是用的传统的Iterator()方法。
Iterator类中的forEachRemaining(Consumer<? super T> action)的实现
/**
* Performs the given action for each remaining element until all elements
* have been processed or the action throws an exception. Actions are
* performed in the order of iteration, if that order is specified.
* Exceptions thrown by the action are relayed to the caller.
*
* @implSpec
* <p>The default implementation behaves as if:
* <pre>{@code
* while (hasNext())
* action.accept(next());
* }</pre>
*
* @param action The action to be performed for each element
* @throws NullPointerException if the specified action is null
* @since 1.8
*/
default void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
while (hasNext())
action.accept(next());
}
但是不要被迷惑了。因为这是最简单的一种例子。最后
由外部迭代转换成了内部迭代。
可以跟一下 IterationSpliterator对象里的Spliterator()方法
这里的forEachRemaining(Consumer<? super T> action)方法的多种实现。也是一个重点。
Debug -> Arrays 里面还有一个 ArrayList。
public class StreamTest3 {
public static void main(String[] args) {
List<String> list = Arrays.asList("hello", "world", "hello world");
list.stream().forEach(System.out::println);
}
}
里面有一个重写的方法。所以调用的是基于数组的Arrays.spliterator()
Spliterators类中:line:940
@SuppressWarnings("unchecked")
@Override
public void forEachRemaining(Consumer<? super T> action) {
Object[] a; int i, hi; // hoist accesses and checks from loop
if (action == null)
throw new NullPointerException();
if ((a = array).length >= (hi = fence) &&
(i = index) >= 0 && i < (index = hi)) {
do { action.accept((T)a[i]); } while (++i < hi);
}
}
看看map()方法的流程
list.stream().map(item -> item).forEach(System.out::println);
ReferencePipeline类中的map实现:opWrapSink()
@Override
@SuppressWarnings("unchecked")
public final <R> Stream<R> map(Function<? super P_OUT, ? extends R> mapper) {
Objects.requireNonNull(mapper);
return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
@Override
Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) {
return new Sink.ChainedReference<P_OUT, R>(sink) {
@Override
public void accept(P_OUT u) {
downstream.accept(mapper.apply(u));
}
};
}
};
}
中间操作时候的AbstractPipeline的构造方法:(追加一个操作到上一个流操作。)
两个构造方法完成的方法是完全不一样的。
/**
* Constructor for appending an intermediate operation stage onto an
* existing pipeline.
*
* @param previousStage the upstream pipeline stage
* @param opFlags the operation flags for the new stage, described in
* {@link StreamOpFlag}
*/
AbstractPipeline(AbstractPipeline<?, E_IN, ?> previousStage, int opFlags) {
if (previousStage.linkedOrConsumed)
throw new IllegalStateException(MSG_STREAM_LINKED);
previousStage.linkedOrConsumed = true;
previousStage.nextStage = this;
this.previousStage = previousStage;
this.sourceOrOpFlags = opFlags & StreamOpFlag.OP_MASK;
this.combinedFlags = StreamOpFlag.combineOpFlags(opFlags, previousStage.combinedFlags);
this.sourceStage = previousStage.sourceStage;
if (opIsStateful())
sourceStage.sourceAnyStateful = true;
this.depth = previousStage.depth + 1;
}
Sink对象(连接引用对象)
/**
* An extension of {@link Consumer} used to conduct values through the stages of
* a stream pipeline, with additional methods to manage size information,
* control flow, etc. Before calling the {@code accept()} method on a
* {@code Sink} for the first time, you must first call the {@code begin()}
* method to inform it that data is coming (optionally informing the sink how
* much data is coming), and after all data has been sent, you must call the
* {@code end()} method. After calling {@code end()}, you should not call
* {@code accept()} without again calling {@code begin()}. {@code Sink} also
* offers a mechanism by which the sink can cooperatively signal that it does
* not wish to receive any more data (the {@code cancellationRequested()}
* method), which a source can poll before sending more data to the
* {@code Sink}.
*
* <p>A sink may be in one of two states: an initial state and an active state.
* It starts out in the initial state; the {@code begin()} method transitions
* it to the active state, and the {@code end()} method transitions it back into
* the initial state, where it can be re-used. Data-accepting methods (such as
* {@code accept()} are only valid in the active state.
*
* @apiNote
* A stream pipeline consists of a source, zero or more intermediate stages
* (such as filtering or mapping), and a terminal stage, such as reduction or
* for-each. For concreteness, consider the pipeline:
*
* <pre>{@code
* int longestStringLengthStartingWithA
* = strings.stream()
* .filter(s -> s.startsWith("A"))
* .mapToInt(String::length)
* .max();
* }</pre>
*
* <p>Here, we have three stages, filtering, mapping, and reducing. The
* filtering stage consumes strings and emits a subset of those strings; the
* mapping stage consumes strings and emits ints; the reduction stage consumes
* those ints and computes the maximal value.
*
* <p>A {@code Sink} instance is used to represent each stage of this pipeline,
* whether the stage accepts objects, ints, longs, or doubles. Sink has entry
* points for {@code accept(Object)}, {@code accept(int)}, etc, so that we do
* not need a specialized interface for each primitive specialization. (It
* might be called a "kitchen sink" for this omnivorous tendency.) The entry
* point to the pipeline is the {@code Sink} for the filtering stage, which
* sends some elements "downstream" -- into the {@code Sink} for the mapping
* stage, which in turn sends integral values downstream into the {@code Sink}
* for the reduction stage. The {@code Sink} implementations associated with a
* given stage is expected to know the data type for the next stage, and call
* the correct {@code accept} method on its downstream {@code Sink}. Similarly,
* each stage must implement the correct {@code accept} method corresponding to
* the data type it accepts.
*
* <p>The specialized subtypes such as {@link Sink.OfInt} override
* {@code accept(Object)} to call the appropriate primitive specialization of
* {@code accept}, implement the appropriate primitive specialization of
* {@code Consumer}, and re-abstract the appropriate primitive specialization of
* {@code accept}.
*
* <p>The chaining subtypes such as {@link ChainedInt} not only implement
* {@code Sink.OfInt}, but also maintain a {@code downstream} field which
* represents the downstream {@code Sink}, and implement the methods
* {@code begin()}, {@code end()}, and {@code cancellationRequested()} to
* delegate to the downstream {@code Sink}. Most implementations of
* intermediate operations will use these chaining wrappers. For example, the
* mapping stage in the above example would look like:
*
* <pre>{@code
* IntSink is = new Sink.ChainedReference<U>(sink) {
* public void accept(U u) {
* downstream.accept(mapper.applyAsInt(u));
* }
* };
* }</pre>
*
* <p>Here, we implement {@code Sink.ChainedReference<U>}, meaning that we expect
* to receive elements of type {@code U} as input, and pass the downstream sink
* to the constructor. Because the next stage expects to receive integers, we
* must call the {@code accept(int)} method when emitting values to the downstream.
* The {@code accept()} method applies the mapping function from {@code U} to
* {@code int} and passes the resulting value to the downstream {@code Sink}.
*
* @param <T> type of elements for value streams
* @since 1.8
*/
interface Sink<T> extends Consumer<T> {
}
执行原理: begin(激活状态)-> accept () -> end() .
A {@code Sink} instance is used to represent each stage of this pipeline,
一个sink,代表管道的每一个阶段。
链接引用:ChainedReference: 是Sink
/**
* Abstract {@code Sink} implementation for creating chains of
* sinks. The {@code begin}, {@code end}, and
* {@code cancellationRequested} methods are wired to chain to the
* downstream {@code Sink}. This implementation takes a downstream
* {@code Sink} of unknown input shape and produces a {@code Sink<T>}. The
* implementation of the {@code accept()} method must call the correct
* {@code accept()} method on the downstream {@code Sink}.
*/
static abstract class ChainedReference<T, E_OUT> implements Sink<T> {
protected final Sink<? super E_OUT> downstream;
public ChainedReference(Sink<? super E_OUT> downstream) {
this.downstream = Objects.requireNonNull(downstream);
}
@Override
public void begin(long size) {
downstream.begin(size);
}
@Override
public void end() {
downstream.end();
}
@Override
public boolean cancellationRequested() {
return downstream.cancellationRequested();
}
}
可以得出一个结论:
流的操作并不是一个一个链式的执行的。
而是先拿出来一个元素,执行所有的操作。执行完毕之后,再拿出来一个元素进行下一次操作。
//ReferencePipeline的 map()方法
@Override
@SuppressWarnings("unchecked")
public final <R> Stream<R> map(Function<? super P_OUT, ? extends R> mapper) {
Objects.requireNonNull(mapper);
return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
@Override
Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) {
return new Sink.ChainedReference<P_OUT, R>(sink) {
@Override
public void accept(P_OUT u) {
downstream.accept(mapper.apply(u));//在这里打断点可以看出来
}
};
}
};
}
看了stream(),map(),filter()方法的执行源码,对流的整理流程有了大概的认识。剩下的方法的流程是可以举一反三的。
伴随着这个执行过程深入的结束,流的学习到此也到了一个标记。
JAVA8学习——Stream底层的实现二(学习过程)的更多相关文章
- JAVA8学习——Stream底层的实现(学习过程)
Stream底层的实现 Stream接口实现了 BaseStream 接口,我们先来看看BaseStream的定义 BaseStream BaseStream是所有流的父类接口. 对JavaDoc做一 ...
- JAVA8学习——Stream底层的实现一(学习过程)
Stream底层的实现 Stream接口实现了 BaseStream 接口,我们先来看看BaseStream的定义 BaseStream BaseStream是所有流的父类接口. 对JavaDoc做一 ...
- JAVA8学习——Stream底层的实现三(学习过程)
Stream的深入(三) 心得:之前学习流,深入了流的底层.但是学的这些东西在平时日常开发的过程中,是根本不会用到的.只是为了更好帮助自己去理解流的底层设施.用起来也更自信,能够确定用的东西非常正确. ...
- JAVA8学习——Stream底层的实现四(学习过程)
Stream的深入(四) 从更高角度去看一下:类与类之间的设计关系 (借助IDEA的图形处理工具 Ctrl+Alt+U). ReferencePipeline的三个实现的子类: Head Statel ...
- JAVA8学习——深入浅出函数式接口FunctionInterface(学习过程)
函数式接口 函数式接口详解:FunctionInterface接口 话不多说,先打开源码,查阅一番.寻得FunctionInterface接口 package java.util.function; ...
- JAVA8学习——从使用角度深入Stream流(学习过程)
Stream 流 初识Stream流 简单认识一下Stream:Stream类中的官方介绍: /** * A sequence of elements supporting sequential an ...
- JAVA8学习——深入浅出Lambda表达式(学习过程)
JAVA8学习--深入浅出Lambda表达式(学习过程) lambda表达式: 我们为什么要用lambda表达式 在JAVA中,我们无法将函数作为参数传递给一个方法,也无法声明返回一个函数的方法. 在 ...
- Java8新特性 Stream流式思想(二)
如何获取Stream流刚开始写博客,有一些不到位的地方,还请各位论坛大佬见谅,谢谢! package cn.com.zq.demo01.Stream.test01.Stream; import org ...
- Java8学习笔记目录
Java8学习笔记(一)--Lambda表达式 Java8学习笔记(二)--三个预定义函数接口 Java8学习笔记(三)--方法引入 Java8学习笔记(四)--接口增强 Java8学习笔记(五)-- ...
随机推荐
- Kafka connector (kafka核心API)
前言 Kafka Connect是一个用于将数据流输入和输出Kafka的框架.Confluent平台附带了几个内置connector,可以使用这些connector进行关系数据库或HDFS等常用系统到 ...
- 《剑指offer》面试题62. 圆圈中最后剩下的数字
问题描述 0,1,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字.求出这个圆圈里剩下的最后一个数字. 例如,0.1.2.3.4这5个数字组成一个圆圈,从数字0开始每次删除第 ...
- docker安装、下载镜像、容器的基本操作
文章目录 一.docker安装与基本使用 1.docker的安装.从远程仓库下载镜像 2.配置docker国内源 二.创建容器 1.create i.创建容器 ii.进入容器 iii.启动容器 2.r ...
- 带你玩转Flink流批一体分布式实时处理引擎
摘要:Apache Flink是为分布式.高性能的流处理应用程序打造的开源流处理框架. 本文分享自华为云社区<[云驻共创]手把手教你玩转Flink流批一体分布式实时处理引擎>,作者: 萌兔 ...
- 龙芯 3A4000 安装 Debian10 (via debootstrap)
由于一些原因,Debian 的内核不能直接在龙芯的 cpu 上使用.据悉 Linux 5.7 kernel 改进了对龙芯的支持,不久的将来我们应该就能更愉快地在龙芯上运行 Debian 了. 感谢龙芯 ...
- sql解除死锁
select spIdfrom master..SysProcesseswhere db_Name(dbID) = 'Tb_axxxxx'and spId <> @@SpIdand dbI ...
- 【解决了一个问题】腾讯云中使用ckafka生产消息时出现“kafka server: Message contents does not match its CRC.”错误
初始化的主要代码如下: config := sarama.NewConfig() config.Producer.RequiredAcks = sarama.WaitForAll // Wait fo ...
- Spring系列4:依赖注入的2种方式
本文内容 基于构造器的依赖注入 基于setter的依赖注入 基于构造器的依赖注入 案例 定义2个简单的bean类,BeanOne 和 BeanTwo,前者依赖后者. package com.crab. ...
- Tomcat下载安装以及配置方法
Tomcat环境变量配置方法 注意一定要在java环境配置成功之后再来配置tomcat.我这里仅展现在Windows系统下载的安装方法 Tomcat下载地址如下: https://tomcat.apa ...
- K8s PV and PVC and StorageClass
PVC和PV之间没有依靠ID.名称或者label匹配,而是靠容量和访问模式,PVC的容量和访问模式需要是某个PV的子集才能自动匹配上.注意:PVC和PV是一对一的,也即一个PV被一个PVC自动匹配后, ...