[LeetCode每日一题]1143. 最长公共子序列

问题

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。 示例 1:
输入:text1 = "abcde", text2 = "ace"
输出:3
解释:最长公共子序列是 "ace" ,它的长度为 3 。
示例 2:
输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。
示例 3:
输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 。 提示:
1 <= text1.length, text2.length <= 1000
text1 和 text2 仅由小写英文字符组成。

简单的动态规划,z大神秒杀的那种,本菜鸡瑟瑟发抖。

解题思路

求两个数组或者字符串的最长公共子序列问题,肯定是要用动态规划的。

首先,区分两个概念:子序列可以是不连续的;子数组(子字符串)需要是连续的;

另外,动态规划也是有套路的:单个数组或者字符串要用动态规划时,可以把动态规划 dp[i] 定义为 nums[0:i] 中想要求的结果;当两个数组或者字符串要用动态规划时,可以把动态规划定义成两维的 dp[i][j] ,其含义是在 A[0:i] 与 B[0:j] 之间匹配得到的想要的结果。

1.状态定义

比如对于本题而言,可以定义 dp[i][j]表示 text1[0:i-1] 和 text2[0:j-1] 的最长公共子序列。 (注:text1[0:i-1] 表示的是 text1 的 第 0 个元素到第 i - 1 个元素,两端都包含)

之所以 dp[i][j] 的定义不是 text1[0:i] 和 text2[0:j] ,是为了方便当 i = 0 或者 j = 0 的时候,dp[i][j]表示为空字符串和另外一个字符串的匹配,这样 dp[i][j] 可以初始化为 0.

2.状态转移方程

知道状态定义之后,我们开始写状态转移方程。

当 text1[i - 1] == text2[j - 1] 时,说明两个子字符串的最后一位相等,所以最长公共子序列又增加了 1,所以 dp[i][j] = dp[i - 1][j - 1] + 1;举个例子,比如对于 ac 和 bc 而言,他们的最长公共子序列的长度等于 a 和 c 的最长公共子序列长度 0 + 1 = 1。

当 text1[i - 1] != text2[j - 1] 时,说明两个子字符串的最后一位不相等,那么此时的状态 dp[i][j] 应该是 dp[i - 1][j] 和 dp[i][j - 1] 的最大值。举个例子,比如对于 ace 和 bc 而言,他们的最长公共子序列的长度等于 ① ace 和 b 的最长公共子序列长度0 与 ② ac 和 bc 的最长公共子序列长度1 的最大值,即 1。

综上状态转移方程为:

dp[i][j] = dp[i - 1][j - 1] + 1dp[i][j]=dp[i−1][j−1]+1, 当 text1[i - 1] == text2[j - 1];text1[i−1]==text2[j−1];

dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])dp[i][j]=max(dp[i−1][j],dp[i][j−1]), 当 text1[i - 1] != text2[j - 1]text1[i−1]!=text2[j−1]

3.状态的初始化

初始化就是要看当 i = 0 与 j = 0 时, dp[i][j] 应该取值为多少。

当 i = 0 时,dp[0][j] 表示的是text1中取空字符串 跟text2的最长公共子序列,结果肯定为 0.

当 j = 0 时,dp[i][0] 表示的是text2中取空字符串 跟text1的最长公共子序列,结果肯定为 0.

综上,当 i = 0 或者 j = 0 时,dp[i][j] 初始化为 0.

4.遍历方向与范围

由于 dp[i][j] 依赖与 dp[i - 1][j - 1] , dp[i - 1][j], dp[i][j - 1],所以i和j的遍历顺序肯定是从小到大的。

另外,由于当 ii 和 jj 取值为 0 的时候,dp[i][j] = 0,而 dp 数组本身初始化就是为 0,所以,直接让 i 和 j 从 1 开始遍历。遍历的结束应该是字符串的长度为 len(text1) 和 len(text2)。

5.最终返回结果

由于 dp[i][j] 的含义是 text1[0:i-1] 和 text2[0:j-1] 的最长公共子序列。我们最终希望求的是 text1 和 text2 的最长公共子序列。所以需要返回的结果是 i = len(text1) 并且 j = len(text2) 时的 dp[len(text1)][len(text2)]。

代码

经过上面的分析,我们可以得到下面的代码。

#include<bits/stdc++.h>
using namespace std;
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
int m = text1.length(), n = text2.length();
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
for (int i = 1; i <= m; i++) {
char c = text1.at(i - 1);
for (int j = 1; j <= n; j++) {
char b = text2.at(j - 1);
if (c == b) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
cout << dp[m][n] << endl;
return dp[m][n];
}
}; int main() {
Solution s;
string text1, text2;
text1 = "abcde", text2 = "ace";
s.longestCommonSubsequence(text1, text2);
return 0;
}

[LeetCode每日一题]1143. 最长公共子序列的更多相关文章

  1. 1. 线性DP 1143. 最长公共子序列

    最经典双串: 1143. 最长公共子序列 (LCS)  https://leetcode-cn.com/problems/longest-common-subsequence/submissions/ ...

  2. LeetCode 1143 最长公共子序列

    链接:https://leetcode-cn.com/problems/longest-common-subsequence 给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序 ...

  3. LeetCode第14题:最长公共前缀

    题目描述 编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flower","flow ...

  4. 从最长公共子序列问题理解动态规划算法(DP)

    一.动态规划(Dynamic Programming) 动态规划方法通常用于求解最优化问题.我们希望找到一个解使其取得最优值,而不是所有最优解,可能有多个解都达到最优值. 二.什么问题适合DP解法 如 ...

  5. Luogu 3402 最长公共子序列(二分,最长递增子序列)

    Luogu 3402 最长公共子序列(二分,最长递增子序列) Description 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子可教,就给他布置了一个课后作业: ...

  6. 【python】Leetcode每日一题-最长公共子序列

    [python]Leetcode每日一题-最长公共子序列 [题目描述] 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度.如果不存在 公共子序列 ,返回 0 . ...

  7. 【LeetCode每日一题 Day 5】5. 最长回文子串

    大家好,我是编程熊,今天是LeetCode每日一题的第五天,一起学习LeetCode第五题<最长回文子串>. 题意 给你一个字符串 s,找到 s 中最长的回文子串. 示例 输入:s = & ...

  8. 每日一题-——最长公共子序列(LCS)与最长公共子串

    最长公共子序列(LCS) 思路: 代码: def LCS(string1,string2): len1 = len(string1) len2 = len(string2) res = [[0 for ...

  9. 【js】Leetcode每日一题-完成所有工作的最短时间

    [js]Leetcode每日一题-完成所有工作的最短时间 [题目描述] 给你一个整数数组 jobs ,其中 jobs[i] 是完成第 i 项工作要花费的时间. 请你将这些工作分配给 k 位工人.所有工 ...

随机推荐

  1. FreeBSD WIFI 配置

    ee /boot/ loader.conf ee是个编辑器 中写入 rtwn_usb_load="YES" legal.realtek.license_ack=1 在 /etc/ ...

  2. 死磕生菜 -- lettuce 间歇性发生 RedisCommandTimeoutException 的深层原理及解决方案

    0x00 起源 项目的一些微服务集成了 Spring Data Redis,而底层的 Redis 客户端是 lettuce,这也是默认的客户端.微服务在某些环境中运行很正常,但在另一些环境中运行就会间 ...

  3. Spring Boot 启动过程

    一切从SpringApplication.run()开始,最终返回一个ConfigurableApplicationContext 构造了一个SpringApplication对象,然后调用它的run ...

  4. 如何使用jQuery $.post() 方法实现前后台数据传递

    基础方法为 $.post(URL,data,callback); 参数介绍: 1.URL 参数规定您希望请求的 URL. 2.data 参数规定连同请求发送的数据. 3.callback 参数是请求成 ...

  5. Reverse 高校网络信息安全运维挑战赛

    Reverse 高校网络信息安全运维挑战赛 1 signed int sub_403CC0() 2 { 3 unsigned int v0; // eax 4 int key_lens; // eax ...

  6. PTA 找出不是两个数组共有的元素

    7-2 找出不是两个数组共有的元素 (20 分)   给定两个整型数组,本题要求找出不是两者共有的元素. 输入格式: 输入分别在两行中给出两个整型数组,每行先给出正整数N(≤),随后是N个整数,其间以 ...

  7. 11、MyBatis教程之动态SQL

    12.动态SQL 1.介绍 什么是动态SQL:动态SQL指的是根据不同的查询条件 , 生成不同的Sql语句. 官网描述: MyBatis 的强大特性之一便是它的动态 SQL.如果你有使用 JDBC 或 ...

  8. Activiti工作流学习笔记(四)——工作流引擎中责任链模式的建立与应用原理

    原创/朱季谦 本文需要一定责任链模式的基础,主要分成三部分讲解: 一.简单理解责任链模式概念 二.Activiti工作流里责任链模式的建立 三.Activiti工作流里责任链模式的应用 一.简单理解责 ...

  9. [Fundamental of Power Electronics]-PART I-6.变换器电路-6.2 变换器简单罗列

    6.2 变换器简单罗列 变换器的数量可能有无穷种,因此将其全部列出是不可能的.这里给出了一个简单的罗列清单. 首先考虑含单个电感的单输入单输出变换器的类别.可以在电源和负载之间进行连接电感的方法数量是 ...

  10. php添加excel更新数据表数据

    公司有个需求,是用excel更新数据的,把错误的行列放到一个数组返回出来,正常的数据则插入,且返回数量 1.先需要引入phpspreadsheet,这里使用composer 安装 composer r ...