推荐算法-聚类-K-MEANS
对于大型的推荐系统,直接上协同过滤或者矩阵分解的话可能存在计算复杂度过高的问题,这个时候可以考虑用聚类做处理,其实聚类本身在机器学习中也常用,属于是非监督学习的应用,我们有的只是一组组数据,最终我们要把它们分组,但是前期没有任何的先验知识告诉我们那个点是属于那个组的。
当我们有足够的数据的时候可以考虑先用聚类做第一步处理,来缩减协同过滤的选择范围,从而降低复杂度。
对了还想起来机器学习里面也经常用聚类的方式进行降维。这个在机器学习笔记部分后期我会整理。
最终,每个聚类中的用户,都会收到为这个聚类计算出的推荐内容。聚类的话也有很多种方法时间,今天是整理最简单的那个姿势:K-MEANS
K-MEANS聚类算法是非常常用的聚类算法。它出现在很多介绍性的数据科学和机器学习课程中。在代码中很容易理解和实现!

- 首先,选择一些类/组来使用并随机地初始化它们各自的中心点。要想知道要使用的类的数量,最好快速地查看一下数据,并尝试识别任何不同的分组。中心点是与每个数据点向量相同长度的向量,在上面的图形中是“X”。
- 每个数据点通过计算点可每个组中心之间的距离进行分类,然后将这个点分类为最接近它的组。
- 基于这些分类点,我们通过去组中所有向量的均值来重新计算中心。
- 对一组迭代重复这些步骤。你还可以选择随机初始化组中心几次,然后选择那些看起来对他提供好结果的来运行。
K-MEANS聚类算法的优势在于它的速度非常快,因为我们所有的只是计算点和集群中心之间的距离,它有一个线性复杂度O(n)[注意不是整体的时间复杂度]。
另一方面,K-MEANS也有几个缺点。首先,你必须选择有多少组/类。这并不是不重要的事,理想情况下,我们希望它能帮我门解决这些问题,因为他的关键在于从数据中国的一些启示,K-MEANS也从随机的聚类中心开始,因此在不同的算法运行中可能产生不同的聚类结果。因此,结果可能是不可重复的,并且缺乏一致性。其他聚类方法更加一致。
K-Medians是另一种与K-MEANS有关的聚类算法,除了使用均值的中间值来重新计算数组中心点以外,这种方法对于离散值的民高度较低(因为使用中值),但对于较大的数据集来说,它要慢得多,因为在计算中值向量时,每次迭代都需要进行排序。
推荐算法-聚类-K-MEANS的更多相关文章
- 推荐算法-聚类-DBSCAN
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法,类似于均值转移聚类算法,但 ...
- 基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)
其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登 ...
- KNN 与 K - Means 算法比较
KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...
- 机器学习 - 算法 - 聚类算法 K-MEANS / DBSCAN算法
聚类算法 概述 无监督问题 手中无标签 聚类 将相似的东西分到一组 难点 如何 评估, 如何 调参 基本概念 要得到的簇的个数 - 需要指定 K 值 质心 - 均值, 即向量各维度取平均 距离的度量 ...
- apriori推荐算法
大数据时代开始流行推荐算法,所以作者写了一篇教程来介绍apriori推荐算法. 推荐算法大致分为: 基于物品和用户本身 基于关联规则 基于模型的推荐 基于物品和用户本身 基于物品和用户本身的,这种推荐 ...
- 美团网基于机器学习方法的POI品类推荐算法
美团网基于机器学习方法的POI品类推荐算法 前言 在美团商家数据中心(MDC),有超过100w的已校准审核的POI数据(我们一般将商家标示为POI,POI基础信息包括:门店名称.品类.电话.地址.坐标 ...
- SimRank协同过滤推荐算法
在协同过滤推荐算法总结中,我们讲到了用图模型做协同过滤的方法,包括SimRank系列算法和马尔科夫链系列算法.现在我们就对SimRank算法在推荐系统的应用做一个总结. 1. SimRank推荐算法的 ...
- 推荐算法相关总结表(包括DM)
推荐算法总结表 表1 推荐算法分类 个性化推荐算法分类 启发式算法 基于模型 基于内容 TF-IDF 聚类 最大熵 相似度度量 贝叶斯分类 决策树 神经网络 专家系统 知识推理 协同过滤 K近邻 聚类 ...
- 推荐算法之用矩阵分解做协调过滤——LFM模型
隐语义模型(Latent factor model,以下简称LFM),是推荐系统领域上广泛使用的算法.它将矩阵分解应用于推荐算法推到了新的高度,在推荐算法历史上留下了光辉灿烂的一笔.本文将对 LFM ...
随机推荐
- Spring Boot 轻量替代框架 Solon 的架构笔记
Solon 是一个微型的Java开发框架.项目从2018年启动以来,参考过大量前人作品:历时两年,4000多次的commit:内核保持0.1m的身材,超高的跑分,良好的使用体验.支持:RPC.REST ...
- WDN302国产化网络存储控制模块
WDN302是一款网络存储控制模块,实现对NAS和IP-SAN的混合支持,通过以太网对海量存储的访问,实现数据的存储.共享.恢复和防丢失. 飞腾 FT1500A/16处理器,主频 1.5GHz: 支持 ...
- WPF 基础 - Trigger
1. Trigger 1.1 由属性值触发的 Trigger 最基本的触发器,Property 是关注的属性名称,value 是触发条件,一旦触发条件满足,就会应用 Trigger 的 Setters ...
- Python接口自动化实现
一.代码结构: 二.接口签名实现: 1. 设所有发送的数据集合为M,将集合M内非空参数值的参数按照[参数名+"="+参数值]的ASCII码从小到大排序(字典序),然后按拼接key1 ...
- linux 系统用户与用户组管理
关于/etc/passwd和/etc/shadow /etc/passwd 第1个字段为用户名(第一行中的root就是用户名)第2个字段存放的是该账号的口令.第3个字段为一个数字,这个数字代表的用户标 ...
- 在ASP.NET Core中用HttpClient(三)——发送HTTP PATCH请求
在前面的两篇文章中,我们讨论了很多关于使用HttpClient进行CRUD操作的基础知识.如果你已经读过它们,你就知道如何使用HttpClient从API中获取数据,并使用HttpClient发送PO ...
- css字体的属性
1 <!DOCTYPE html> 2 <html lang="en"> 3 <head> 4 <meta charset="U ...
- C语言之简易了解程序环境
C语言之简易了解程序环境 大纲: 程序的翻译环境 预编译 编译 汇编 链接 程序的运行环境 在ANSI C的任何一种实现中,存在两个不同的环境. 第1种是翻译环境,在这个环境中源代码被转换为可执行的机 ...
- 我的开源GIS解决方案之路
好久没更新了,因为我在--憋--大--招--,对,就是今天这篇. 今天跟大家分享一下我的开源GIS解决方案经历. --额-- 考虑到单聊技术解决方案你可能会很快睡着,所以我今天会把重点放在我封装地图A ...
- 【SqlServer】管理全文索引(FULL TEXT INDEX)
Sql Server中的全文索引(下面统一使用FULLTEXT INDEX来表示全文索引),是一种特定语言搜索索引功能.它和LIKE的不一样,LIKE主要是根据搜索模板搜索数据,它的效率比FULLTE ...