hdu3472 混合欧拉
题意:
给你一些字符串,有的字符串反过来也有意义,题目问给的这n个字符串是否可以首尾相连,组成一个串。
思路:
算是混合欧拉的基础题目了,混合欧拉就是专门处理这类问题的,先说下混合欧拉的大体步骤。
(1) 判断整个图是否连通,如果不连通直接不行(方法随意,并查集搜索什么的都行)
(2) 看度数差为奇数的有多少个,只能有0个或者两个,其他的都不行。
(3) 如果度数差有奇数的有两个,那么一定一个是正的v1,一个是负的v2,add(v1 ,v2 ,1);
(4) 如果方向随意的边,那么我们随意建立一条就行add(a ,b ,1),方向固定的不用管
(5) 虚拟超级远点s,超级汇点e,然后所有度数为负数的add(s ,i ,-du[i]/2),所有为 正的add(i ,e ,du[i]/2);
(6) 最后一遍最大流,看是否满流,如果满流,那么就是有解,否则无解。
至于为什么费用留可以这样求,等比赛回来再来详细补充这个问题。
#include<queue>
#include<stdio.h>
#include<string.h>
#define N_node 30
#define N_edge 10000
#define INF 100000000
using namespace std;
typedef struct
{
int to ,next ,cost;
}STAR;
typedef struct
{
int x ,t;
}DEP;
STAR E[N_edge];
DEP xin ,tou;
int list[N_node] ,listt[N_node] ,tot;
int du[N_node] ,deep[N_node];
int mer[N_node];
void add(int a, int b ,int c)
{
E[++tot].to = b;
E[tot].cost = c;
E[tot].next = list[a];
list[a] = tot;
E[++tot].to = a;
E[tot].cost = 0;
E[tot].next = list[b];
list[b] = tot;
}
int minn(int x ,int y)
{
return x < y ? x : y;
}
int finds(int x)
{
return x == mer[x] ? x : mer[x] = finds(mer[x]);
}
bool BFS_Deep(int s ,int t ,int n)
{
memset(deep ,255 ,sizeof(deep));
queue<DEP>q;
xin.x = s ,xin.t = 0;
q.push(xin);
deep[xin.x] = xin.t;
while(!q.empty())
{
tou = q.front();
q.pop();
for(int k = list[tou.x] ;k ;k = E[k].next)
{
xin.x = E[k].to;
xin.t = tou.t + 1;
if(deep[xin.x] != -1 || !E[k].cost) continue;
deep[xin.x] = xin.t;
q.push(xin);
}
}
for(int i = 0 ;i <= n ;i ++)
listt[i] = list[i];
return deep[t] != -1;
}
int DFS_Flow(int s ,int t ,int flow)
{
if(s == t) return flow;
int nowflow = 0;
for(int k = listt[s] ;k ;k = E[k].next)
{
int to = E[k].to;
int c = E[k].cost;
listt[s] = k;
if(deep[to] != deep[s] + 1 || !c) continue;
int tmp = DFS_Flow(to ,t ,minn(c ,flow - nowflow));
nowflow += tmp;
E[k].cost -= tmp;
E[k^1].cost += tmp;
if(nowflow == flow) break;
}
if(!nowflow) deep[s] = 0;
return nowflow;
}
int DINIC(int s ,int t ,int n)
{
int Ans = 0;
while(BFS_Deep(s ,t ,n))
{
Ans =+ DFS_Flow(s ,t ,INF);
}
return Ans;
}
int main ()
{
int n ,i ,j ,a ,b ,c;
int mark[30];
int t ,cas = 1;
char str[30];
scanf("%d" ,&t);
while(t--)
{
scanf("%d" ,&n);
memset(list ,0 ,sizeof(list)) ,tot = 1;
memset(du ,0 ,sizeof(du));
memset(mark ,0 ,sizeof(mark));
for(i = 1 ;i <= 26 ;i ++) mer[i] = i;
for(i = 1 ;i <= n ;i ++)
{
scanf("%s %d" ,str ,&c);
a = str[0] - 'a' + 1;
b = str[strlen(str)-1] - 'a' + 1;
du[a] -- ,du[b] ++;
mark[a] = mark[b] = 1;
mer[finds(a)] = finds(b);
if(c) add(a ,b ,1);
}
int sum = 0;
for(i = 1 ;i <= 26 && sum <= 2;i ++)
if(finds(i) == i && mark[i]) sum ++;
printf("Case %d: " ,cas ++);
if(sum != 1)
{
puts("Poor boy!");
continue;
}
sum = 0;
int v1 ,v2;
for(i = 1 ;i <= 26 ;i ++)
{
if(du[i] % 2 && du[i] < 0) v1 = i ,sum ++;
if(du[i] % 2 && du[i] > 0) v2 = i ,sum ++;
}
if(sum != 0 && sum != 2)
{
puts("Poor boy!");
continue;
}
if(sum == 2)
{
add(v1 ,v2 ,1);
du[v1] -- ,du[v2] ++;
}
sum = 0;
for(i = 1 ;i <= 26 ;i ++)
{
if(!mark[i]) continue;
if(du[i] < 0) add(0 ,i ,-du[i]/2) ,sum -= du[i]/2;
else add(i ,27 ,du[i]/2);
}
DINIC(0 ,27 ,27) == sum ? puts("Well done!"):puts("Poor boy!");
}
return 0;
}
hdu3472 混合欧拉的更多相关文章
- hdu4067 费用流(混合欧拉的宽展和延伸)
题意: 给以一个图,每个有向边都有两个权值,a,b其中a是保留这条边的花费,b是删除这条边的花费,让你删去一些边使图满足一下要求: (1)只有一个起点和一个终点 (2)所有的边都是又向的 ...
- hdu3472 混合图判断欧拉通路
对于欧拉回路,先判断出度入度的差是否为偶数,然后最大流一次. 此题是判断有无欧拉通路,前提要判断图是否连通,然后欧拉通路的条件:要么出入度差没有奇数,或者只有2个点. 所以先统计差为奇数的个数,如果不 ...
- hdu2588 GCD (欧拉函数)
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数. (文末有题) 知 ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- Euler-Maruyama discretization("欧拉-丸山"数值解法)
欧拉法的来源 在数学和计算机科学中,欧拉方法(Euler method)命名自它的发明者莱昂哈德·欧拉,是一种一阶数值方法,用以对给定初值的常微分方程(即初值问题)求解.它是一种解决常微分方程数值积分 ...
- COGS2531. [HZOI 2016]函数的美 打表+欧拉函数
题目:http://cogs.pw/cogs/problem/problem.php?pid=2533 这道题考察打表观察规律. 发现对f的定义实际是递归式的 f(n,k) = f(0,f(n-1,k ...
- poj2478 Farey Sequence (欧拉函数)
Farey Sequence 题意:给定一个数n,求在[1,n]这个范围内两两互质的数的个数.(转化为给定一个数n,比n小且与n互质的数的个数) 知识点: 欧拉函数: 普通求法: int Euler( ...
- 51Nod-1136 欧拉函数
51Nod: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1136 1136 欧拉函数 基准时间限制:1 秒 空间限制: ...
随机推荐
- Docker搭建HAproxy+tomcat 实现高可用
构建业务镜像1创建tomcat-app1和tomcat-app2两个目录,代表不同的两个基于tomcat的业务.准备tomcat的配置文件[root@localhost ~]#mkdir -p /da ...
- 翻译:《实用的Python编程》04_01_Class
目录 | 上一节 (3.6 设计讨论) | 下一节 (4.2 继承) 4.1 类 本节介绍 class 语句以及创建新对象的方式. 面向对象编程(OOP) 面向对象编程是一种将代码组织成对象集合的编程 ...
- add_header被覆盖 -配置错误
Nginx的配置文件分为Server.Location.If等一些配置块,并且存在包含关系,和编程语言比较类似.如果在外层配置的一些选项,是可以被继承到内层的. 但这里的继承也有一些特性,比如add_ ...
- git的回滚与撤销【reset and revert】
git的工作流程-- 3个区域 工作区:我们可以看到的文件内容 在操作 git add 之前的!! 缓存区:是不可见的 已经git add操作,还没git commit -m "" ...
- java实现下载器(以及创建一个URL对象)
java实现下载器(以及创建一个URL对象) 1.思路讲解: (1)注意路径:是网络路径噢 (2)创建创建网路协议对象(远程对象):HttpURLConnection urlConnection (3 ...
- Python深入:setuptools进阶
作者:gqtcgq 来源:CSDN 原文:https://blog.csdn.net/gqtcgq/article/details/49519685 Setuptools是Python Distuti ...
- 在 .NET Core 中构建 REST API
翻译自 Camilo Reyes 2020年8月26日的文章 <Build a REST API in .NET Core> [1] REST API 可以使用简单的动词(如 POST.P ...
- JVM笔记 -- 来,教你类加载子系统
类加载子系统 类文件首先需要经过类加载子系统,进行加载,进类信息等加载到运行时数据区,生成Klass的实例. 在类加载子系统中有以下3个阶段操作(广义上的加载): 加载阶段 Bootstrap Cla ...
- 【LiteOS】LiteOS消息队列
目录 前言 链接 参考 笔录草稿 基本概念 队列运作机制 队列运作原理 消息队列传输方式 消息队列的阻塞机制 出队阻塞 入队阻塞 任务相关函数 任务开发流程 注意事项 * 实战 前言 链接 LiteO ...
- 201871030110-何飞 实验三 结对项目—《D{0-1}KP 实例数据集算法实验平台》项目报告
201871030110-何飞 实验三 结对项目-<D{0-1}KP 实例数据集算法实验平台>项目报告 项目 内容 课程班级博客链接 班级博客 这个作业要求链接 作业要求 我的课程学习目标 ...