hdu4940 有上下界的无源可行流判断
题意:
给你一个强连通图,然后问你是否可以找到任意满足条件的集合S,S是非空集合,T是S的补集,满足sum(D[i ,j]) <= sum(D[j,i] + B[j,i]) i属于S集合,j属于T集合(其实也就暗示了i,j是S,T的割边)。
思路:
无源汇上下流可行流判断问题,首先题目给的图是一个强连通图,为了方便理解,我们假设这个图只有两个点,a,b,那么肯定也只有两条边,a->b ,b->a,那么我们可以直接建边a->b(下界 D 上界 B + D) b->a(下界 D 上界 B + D)这样跑一遍上下流之后如果存在可行流,那么就存在一个a,b之间的循环流(循环流的大小我们不用关心,我们只关心是否存在),那么就会有这样的结论,a->b的D(下限)一定小于等于b->a
的D+B(上限),同时 b->a的D(下限) 一定小于等于a->b的 D+B(上限),所以无论是a,还是b都可以充当S集合。so如果整个图中任意两个集合都这样就显然可以满足题意了。
#include<stdio.h>
#include<string.h>
#include<queue> #define N_node 220
#define N_edge 33000
#define INF 1000000000
using namespace std; typedef struct
{
int to ,next ,cost;
}STAR; typedef struct
{
int x ,t;
}DEP; STAR E[N_edge];
DEP xin ,tou;
int list[N_node] ,listt[N_node] ,tot;
int deep[N_node] ,sum_must; void add(int a ,int b ,int c)
{
E[++tot].to = b;
E[tot].cost = c;
E[tot].next = list[a];
list[a] = tot; E[++tot].to = a;
E[tot].cost = 0;
E[tot].next = list[b];
list[b] = tot;
} void ADD(int a ,int b ,int c ,int d ,int ss ,int tt)
{
add(a ,b ,d - c);
add(a ,tt ,c);
add(ss ,b ,c);
sum_must += c;
} int minn(int x ,int y)
{
return x < y ? x : y;
} bool BFS_Deep(int s ,int t ,int n)
{
xin.x = s ,xin.t = 0;
queue<DEP>q;
q.push(xin);
memset(deep ,255 ,sizeof(deep));
deep[s] = 0;
while(!q.empty())
{
tou = q.front();
q.pop();
for(int k = list[tou.x] ;k ;k = E[k].next)
{
xin.x = E[k].to;
xin.t = tou.t + 1;
if(deep[xin.x] != -1 || !E[k].cost)
continue;
deep[xin.x] = xin.t;
q.push(xin);
}
}
for(int i = 0 ;i <= n ;i ++)
listt[i] = list[i];
return deep[t] != -1;
} int DFS_Flow(int s ,int t ,int flow)
{
if(s == t) return flow;
int nowflow = 0;
for(int k = listt[s] ;k ;k = E[k].next)
{
listt[s] = k;
int to = E[k].to;
int c = E[k].cost;
if(deep[to] != deep[s] + 1 || !c)
continue;
int tmp = DFS_Flow(to ,t ,minn(c ,flow - nowflow));
nowflow += tmp;
E[k].cost -= tmp;
E[k^1].cost += tmp;
if(nowflow == flow)
break;
}
if(!nowflow) deep[s] = 0;
return nowflow;
} int DINIC(int s ,int t ,int n)
{
int ans = 0;
while(BFS_Deep(s ,t ,n))
{
ans += DFS_Flow(s ,t ,INF);
}
return ans;
} int main ()
{
int t ,n ,m ,i ,a ,b ,c ,d ,cas = 1;
scanf("%d" ,&t);
while(t--)
{
scanf("%d %d" ,&n ,&m);
int ss = 0 ,tt = n + 1;
memset(list ,0 ,sizeof(list));
tot = 1 ,sum_must = 0;
for(i = 1 ;i <= m ;i ++)
{
scanf("%d %d %d %d" ,&a ,&b ,&c ,&d);
ADD(a ,b ,c ,c + d ,ss ,tt);
}
printf("Case #%d: " ,cas ++);
sum_must == DINIC(ss ,tt ,tt) ? puts("happy") : puts("unhappy");
}
return 0;
}
hdu4940 有上下界的无源可行流判断的更多相关文章
- ZOJ2314 Reactor Cooling(无源汇流量有上下界网络的可行流)
题目大概说一个核反应堆的冷却系统有n个结点,有m条单向的管子连接它们,管子内流量有上下界的要求,问能否使液体在整个系统中循环流动. 本质上就是求一个无源汇流量有上下界的容量网络的可行流,因为无源汇的容 ...
- hdu 4940 Destroy Transportation system( 无源汇上下界网络流的可行流推断 )
题意:有n个点和m条有向边构成的网络.每条边有两个花费: d:毁坏这条边的花费 b:重建一条双向边的花费 寻找这样两个点集,使得点集s到点集t满足 毁坏全部S到T的路径的费用和 > 毁坏全部T到 ...
- BZOJ 3876 支线剧情 有源汇有上下界最小费用可行流
题意: 给定一张拓扑图,每条边有边权,每次只能从第一个点出发沿着拓扑图走一条路径,求遍历所有边所需要的最小边权和 分析: 这道题乍一看,可能会想到什么最小链覆盖之类的,但是仔细一想,会发现不行,一是因 ...
- BZOJ 2055 80人环游世界 有上下界最小费用可行流
题意: 现在有这么一个m人的团伙,也想来一次环游世界. 他们打算兵分多路,游遍每一个国家. 因为他们主要分布在东方,所以他们只朝西方进军.设从东方到西方的每一个国家的编号依次为1...N.假若第 ...
- zoj 3229 上下界网络最大可行流带输出方案
收获: 1. 上下界网络流求最大流步骤: 1) 建出无环无汇的网络,并看是否存在可行流 2) 如果存在,那么以原来的源汇跑一次最大流 3) 流量下界加上当前网络每条边的流量就是最大可行流了. 2. 输 ...
- POJ2396 Budget(有源汇流量有上下界网络的可行流)
题目大概给一个有n×m个单元的矩阵,各单元是一个非负整数,已知其每行每列所有单元的和,还有几个约束条件描述一些单元是大于小于还是等于某个数,问矩阵可以是怎样的. 经典的流量有上下界网络流问题. 把行. ...
- POJ 2396 Budget (上下界网络流有源可行流)
转载: http://blog.csdn.net/axuan_k/article/details/47297395 题目描述: 现在要针对多赛区竞赛制定一个预算,该预算是一个行代表不同种类支出.列代表 ...
- sgu 176 上下界网络流最小可行流带输出方案
算法步骤: 1. 先将原图像最大可行流那样变换,唯一不同的是不加dst->src那条边来将它变成无源无汇的网络流图.直接跑一边超级源到超级汇的最大流. 2. 加上刚才没有加上的那条边p 3. 再 ...
- sgu 194 Reactor Cooling(有容量上下界的无源无汇可行流)
[题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20757 [题意] 求有容量上下界的无源无汇可行流. [思路] ...
随机推荐
- 数据采集组件:Flume基础用法和Kafka集成
本文源码:GitHub || GitEE 一.Flume简介 1.基础描述 Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集.聚合和传输的系统,Flume支持在日志系统中 ...
- WBX24T2X CPEX国产化万兆交换板
WBX24T2X是基于盛科CTC5160设计的国产化6U三层万兆CPEX交换板,提供24路千兆电口和2路万兆光口,采用龙芯 2K1000处理器.支持常规的L2/L3协议,支持Telnet.SNMP ...
- java集合框架部分相关接口与类的介绍
集合基础 接口 Iterable //Implementing this interface allows an object to be the target of the "for-ea ...
- css行高
1 <!DOCTYPE html> 2 <html lang="en"> 3 <head> 4 <meta charset="U ...
- python网络编程-TCP服务端的开发
#TCP服务端开发 2 #方法说明 3 """ 4 bind(host,port)表示绑定端口号,host是ip地址,ip地址一般不进 行绑定,表示本机的任何一个ip地址 ...
- c++ 反汇编 除法优化
接上篇:<C++反汇编与逆向分析技术揭秘>--算术运算和赋值 printf("argc / 4 = %d\n", argc / 4); printf("arg ...
- 从阿里云迁移分布式redis实例到华为云解决方案(详细)
如果要换多数是经济因素啦- 一. 准备工作 先在华为云上买一台redis数据库,配置一定要注意多数要保持一致,至于4.0还是5.0倒问题不大亲测兼容 可用区要找现有ECS云主机中的相同的机器.记下:这 ...
- Dynamics CRM报表无法访问提示“报表服务器无法访问或使用加密密钥。你可能需要将服务器添加到扩展组,或重新导入”
当我们部署Dynamics CRM的环境的时候如果报表配置的不规范会出现很多问题,尤其是这个问题相对来说更棘手,解决起来非常麻烦. 网上很多教程都说直接到报表配置页删除密钥就可以了,实际上删除的时候会 ...
- windows上phpstudy配置memcache
原文 http://blog.csdn.net/ltx06/article/details/78588448 总的来说,分两步:同时安装memcached软件服务和安装php_memcache ...
- Vulkan移植GpuImage(三)从A到C的滤镜
前面移植了几个比较复杂的效果后,算是确认了复杂滤镜不会对框架造成比较大的改动,开始从头移植,现已把A到C的所有滤镜用vulkan的ComputeShader实现了,讲一些其中实现的过程. Averag ...