hdu4940 有上下界的无源可行流判断
题意:
给你一个强连通图,然后问你是否可以找到任意满足条件的集合S,S是非空集合,T是S的补集,满足sum(D[i ,j]) <= sum(D[j,i] + B[j,i]) i属于S集合,j属于T集合(其实也就暗示了i,j是S,T的割边)。
思路:
无源汇上下流可行流判断问题,首先题目给的图是一个强连通图,为了方便理解,我们假设这个图只有两个点,a,b,那么肯定也只有两条边,a->b ,b->a,那么我们可以直接建边a->b(下界 D 上界 B + D) b->a(下界 D 上界 B + D)这样跑一遍上下流之后如果存在可行流,那么就存在一个a,b之间的循环流(循环流的大小我们不用关心,我们只关心是否存在),那么就会有这样的结论,a->b的D(下限)一定小于等于b->a
的D+B(上限),同时 b->a的D(下限) 一定小于等于a->b的 D+B(上限),所以无论是a,还是b都可以充当S集合。so如果整个图中任意两个集合都这样就显然可以满足题意了。
#include<stdio.h>
#include<string.h>
#include<queue> #define N_node 220
#define N_edge 33000
#define INF 1000000000
using namespace std; typedef struct
{
int to ,next ,cost;
}STAR; typedef struct
{
int x ,t;
}DEP; STAR E[N_edge];
DEP xin ,tou;
int list[N_node] ,listt[N_node] ,tot;
int deep[N_node] ,sum_must; void add(int a ,int b ,int c)
{
E[++tot].to = b;
E[tot].cost = c;
E[tot].next = list[a];
list[a] = tot; E[++tot].to = a;
E[tot].cost = 0;
E[tot].next = list[b];
list[b] = tot;
} void ADD(int a ,int b ,int c ,int d ,int ss ,int tt)
{
add(a ,b ,d - c);
add(a ,tt ,c);
add(ss ,b ,c);
sum_must += c;
} int minn(int x ,int y)
{
return x < y ? x : y;
} bool BFS_Deep(int s ,int t ,int n)
{
xin.x = s ,xin.t = 0;
queue<DEP>q;
q.push(xin);
memset(deep ,255 ,sizeof(deep));
deep[s] = 0;
while(!q.empty())
{
tou = q.front();
q.pop();
for(int k = list[tou.x] ;k ;k = E[k].next)
{
xin.x = E[k].to;
xin.t = tou.t + 1;
if(deep[xin.x] != -1 || !E[k].cost)
continue;
deep[xin.x] = xin.t;
q.push(xin);
}
}
for(int i = 0 ;i <= n ;i ++)
listt[i] = list[i];
return deep[t] != -1;
} int DFS_Flow(int s ,int t ,int flow)
{
if(s == t) return flow;
int nowflow = 0;
for(int k = listt[s] ;k ;k = E[k].next)
{
listt[s] = k;
int to = E[k].to;
int c = E[k].cost;
if(deep[to] != deep[s] + 1 || !c)
continue;
int tmp = DFS_Flow(to ,t ,minn(c ,flow - nowflow));
nowflow += tmp;
E[k].cost -= tmp;
E[k^1].cost += tmp;
if(nowflow == flow)
break;
}
if(!nowflow) deep[s] = 0;
return nowflow;
} int DINIC(int s ,int t ,int n)
{
int ans = 0;
while(BFS_Deep(s ,t ,n))
{
ans += DFS_Flow(s ,t ,INF);
}
return ans;
} int main ()
{
int t ,n ,m ,i ,a ,b ,c ,d ,cas = 1;
scanf("%d" ,&t);
while(t--)
{
scanf("%d %d" ,&n ,&m);
int ss = 0 ,tt = n + 1;
memset(list ,0 ,sizeof(list));
tot = 1 ,sum_must = 0;
for(i = 1 ;i <= m ;i ++)
{
scanf("%d %d %d %d" ,&a ,&b ,&c ,&d);
ADD(a ,b ,c ,c + d ,ss ,tt);
}
printf("Case #%d: " ,cas ++);
sum_must == DINIC(ss ,tt ,tt) ? puts("happy") : puts("unhappy");
}
return 0;
}
hdu4940 有上下界的无源可行流判断的更多相关文章
- ZOJ2314 Reactor Cooling(无源汇流量有上下界网络的可行流)
题目大概说一个核反应堆的冷却系统有n个结点,有m条单向的管子连接它们,管子内流量有上下界的要求,问能否使液体在整个系统中循环流动. 本质上就是求一个无源汇流量有上下界的容量网络的可行流,因为无源汇的容 ...
- hdu 4940 Destroy Transportation system( 无源汇上下界网络流的可行流推断 )
题意:有n个点和m条有向边构成的网络.每条边有两个花费: d:毁坏这条边的花费 b:重建一条双向边的花费 寻找这样两个点集,使得点集s到点集t满足 毁坏全部S到T的路径的费用和 > 毁坏全部T到 ...
- BZOJ 3876 支线剧情 有源汇有上下界最小费用可行流
题意: 给定一张拓扑图,每条边有边权,每次只能从第一个点出发沿着拓扑图走一条路径,求遍历所有边所需要的最小边权和 分析: 这道题乍一看,可能会想到什么最小链覆盖之类的,但是仔细一想,会发现不行,一是因 ...
- BZOJ 2055 80人环游世界 有上下界最小费用可行流
题意: 现在有这么一个m人的团伙,也想来一次环游世界. 他们打算兵分多路,游遍每一个国家. 因为他们主要分布在东方,所以他们只朝西方进军.设从东方到西方的每一个国家的编号依次为1...N.假若第 ...
- zoj 3229 上下界网络最大可行流带输出方案
收获: 1. 上下界网络流求最大流步骤: 1) 建出无环无汇的网络,并看是否存在可行流 2) 如果存在,那么以原来的源汇跑一次最大流 3) 流量下界加上当前网络每条边的流量就是最大可行流了. 2. 输 ...
- POJ2396 Budget(有源汇流量有上下界网络的可行流)
题目大概给一个有n×m个单元的矩阵,各单元是一个非负整数,已知其每行每列所有单元的和,还有几个约束条件描述一些单元是大于小于还是等于某个数,问矩阵可以是怎样的. 经典的流量有上下界网络流问题. 把行. ...
- POJ 2396 Budget (上下界网络流有源可行流)
转载: http://blog.csdn.net/axuan_k/article/details/47297395 题目描述: 现在要针对多赛区竞赛制定一个预算,该预算是一个行代表不同种类支出.列代表 ...
- sgu 176 上下界网络流最小可行流带输出方案
算法步骤: 1. 先将原图像最大可行流那样变换,唯一不同的是不加dst->src那条边来将它变成无源无汇的网络流图.直接跑一边超级源到超级汇的最大流. 2. 加上刚才没有加上的那条边p 3. 再 ...
- sgu 194 Reactor Cooling(有容量上下界的无源无汇可行流)
[题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20757 [题意] 求有容量上下界的无源无汇可行流. [思路] ...
随机推荐
- PAT-1144(The Missing Number)set的使用,简单题
The Missing Number PAT-1144 #include<iostream> #include<cstring> #include<string> ...
- Shell脚本控制docker容器启动顺序
1.遇到的问题 在分布式项目部署的过程中,经常要求服务器重启之后,应用(包括数据库)能够自动恢复使用.虽然使用docker update --restart=always containerid能够让 ...
- Redis工具收费后新的开源已出现
作者:三十三重天 博客: zhouhuibo.club 引言 Redis工具哪家强,中国山东找蓝翔.哎呀,串台了. 众所周知,开源的最终还是收费. Reids Desktop 秉承了这一理念,苦逼的程 ...
- 002-JVM部分
JVM部分数据整理 一.运行时数据区域 Java运行时内存区域主要分为线程私有区域[程序计数器.虚拟机栈.本地方法区].线程共享区域[Java堆.方法区].直接内存(不受JVM GC管理) 1.线程私 ...
- BZOJ_4034 [HAOI2015]树上操作 【树链剖分dfs序+线段树】
一 题目 [HAOI2015]树上操作 二 分析 树链剖分的题,这里主要用到了$dfs$序,这题比较简单的就是不用求$lca$. 1.和树链剖分一样,先用邻接链表建双向图. 2.跑两遍$dfs$,其实 ...
- Tex中的引号(JAVA语言)
package 第三章; import java.util.Scanner; public class Tex中的引号 { public static void main(String[] args) ...
- 可读性友好的JavaScript:两个专家的故事
每个人都想成为专家,但什么才是专家呢?这些年来,我见过两种被称为"专家"的人.专家一是指对语言中的每一个工具都了如指掌的人,而且无论是否有帮助,都一定要用好每一点.专家二也知道每一 ...
- libnet的使用详解
最近搬砖需要对libnet进行介绍在这里对知识进行汇总. 1.libnet简介 在libnet出现以前,如果要构造数据包并发送到网络中,程序员要通过一些复杂的接口来处理.libnet的出现,为程序员提 ...
- [开源]制作docker镜像不依赖linux和Docker环境
背景 最近群友们经常反馈docker镜像制作起来有点麻烦,我开源的antdeploy工具虽然可以制作镜像但是必须有一个提前:有一台安装好docker的linux服务器.因为大家开发环境基本上都是win ...
- 【pytest官方文档】解读Skipping test functions,跳过测试用例详解
有时候,为了满足某些场景的需要,我们知道有些测试函数在这时候肯定不能执行,或者执行了也会失败.那么我们 可以选择去跳过这个测试函数,这样也就不会影响整体的测试函数运行效果,不至于在你运行的众多绿色通过 ...