正题

题目链接:https://www.luogu.com.cn/problem/P3507


题目大意

\(n\)个数字的一个序列\(a\),对于每个位置\(i\)求一个\(p_i\)使得对于任意\(j\)满足

\[p_i+a_i-\sqrt{|i-j|}\geq p_j
\]

解题思路

化简一下发现我们是需要求出\(max\{\sqrt{|i-j|}+p_j\}\)

分成两次去掉绝对值。

因为这个根号的性质是增长的越来越小,那么对于一个位置\(i\)若它的\(max\)值位置为\(j\),那么\(i+1\)就一定不小于\(j\)。

利用这个单调性来优化,我们每次直接对于区间正中间\(mid\)暴力求出它的答案\(pos\),那么\([l,mid-1]\)的答案就在\([L,pos]\),而\([mid+1,r]\)的答案就在\([pos,R]\)。

然后递归下去就好了。时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<stack>
#define ll long long
using namespace std;
const ll N=5e5+10;
ll n;double a[N],f[N],sqr[N];
stack<ll> s;
double count(ll i,ll j)
{return a[j]+sqr[abs(j-i)];}
void CDQ(ll l,ll r,ll L,ll R){
if(l>r)return;
ll mid=(l+r)>>1,pos=L;
double tmp=count(mid,L);
for(int i=L+1;i<=R&&i<=mid;i++)
if(count(mid,i)>tmp)
pos=i,tmp=count(mid,i);
f[mid]=max(tmp,f[mid]);
CDQ(l,mid-1,L,pos);CDQ(mid+1,r,pos,R);
return;
}
signed main()
{
scanf("%lld",&n);
for(ll i=1;i<=n;i++){
scanf("%lf",&a[n-i+1]);
sqr[i]=sqrt((double)i);
}
CDQ(1,n,1,n);
for(ll i=1;n-i+1>i;i++)
swap(a[i],a[n-i+1]),swap(f[i],f[n-i+1]);
CDQ(1,n,1,n);
for(ll i=1;i<=n;i++)
printf("%lld\n",(ll)ceil(f[i]-a[i]));
return 0;
}

P3515-[POI2011]Lightning Conductor【整体二分,决策单调性】的更多相关文章

  1. bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)

    每个pi要求 这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化 #include<iostream> #include<cstring> #incl ...

  2. P3515 [POI2011]Lightning Conductor(决策单调性分治)

    P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...

  3. 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)

    洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...

  4. 洛谷P3515 [POI2011]Lightning Conductor(决策单调性)

    题意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) ...

  5. P3515 [POI2011]Lightning Conductor[决策单调性优化]

    给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...

  6. P3515 [POI2011]Lightning Conductor

    首先进行一步转化 $a_j \leq a_i + q - sqrt(abs(i - j))$ $a_i + q \geq a_j + sqrt(abs(i-j))$ 即 $q = max (a_j + ...

  7. 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性

    [BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...

  8. [bzoj 2216] [Poi2011] Lightning Conductor

    [bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的 ...

  9. bzoj 2216 [Poi2011]Lightning Conductor——单调队列+二分处理决策单调性

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2216 那个关于位置的代价是带根号的,所以随着距离的增加而增长变慢:所以靠后的位置一旦比靠前的 ...

随机推荐

  1. java操作excel 工具类

    java操作excel 可参考https://blog.csdn.net/xunwei0303/article/details/53213130 直接上代码: 一.java生成excel文件: pac ...

  2. HttpURLConnection 中Cookie 使用

    方式一: 如果想通过 HttpURLConnection 访问网站,网站返回cookie信息,下次再通过HttpURLConnection访问时,把网站返回 cookie信息再返回给该网站.可以使用下 ...

  3. WPF---数据模板(一)

    一.场景模拟 假设我们现在有如下需求: 我们需要在ListBox中的每个Item中显示某个成员的姓名.年龄以及喜欢的颜色,点击Item的时候,会在右边显示详细信息,同时也想让ListBox的样式变得好 ...

  4. Java String 综述(上篇)

    摘要: Java 中的 String类 是我们日常开发中使用最为频繁的一个类,但要想真正掌握的这个类却不是一件容易的事情.笔者为了还原String类的真实全貌,先分为上.下两篇博文来综述Java中的S ...

  5. 关于servlet中doGet和doPost乱码再一次理解

    今天系统的整理了在web项目下,出现的编码问题,下面就做一些总结: 首先对HTTP协议中对GET和POST的定义:   GET POST 后退按钮/刷新 无害 数据会被重新提交(浏览器应该告知用户数据 ...

  6. 战胜了所有对手,却输给了时代。MVVM--jQuery永远的痛。

    前言 第二次浏览器战争中,随着以 Firefox 和 Opera 为首的 W3C 阵营与 IE 对抗程度的加剧,浏览器碎片化问题越来越严重,不同的浏览器执行不同的标准,对于开发人员来说这是一个恶梦.为 ...

  7. 新东方APP技术团队建设

    作者:张建鑫, 曾任IBM高级软件架构师, 滴滴高级技术专家, 现任新东方集团高级技术总监 2019年注定是不平凡的一年,在俞敏洪老师对科技条线的密切关注下, 吴强老师亲自操盘了对产品技术条线的改革, ...

  8. python·那些不值钱的经验

    时间:2018-11-22 整理:byzqy python读写文本文件 1 # -*- coding: utf-8 -*- 2 3 def read_file(file): 4 with open(f ...

  9. JS中原型与原型链

    一. 普通对象与函数对象 JavaScript 中,万物皆对象!但对象也是有区别的.分为普通对象和函数对象,Object .Function等 是 JS 自带的函数对象.下面举例说明. var o1 ...

  10. SpringBoot-Web-初见

    目录 怎么开发一个网站? 静态资源 找到静态资源的存放目录 扩展自定义路径 首页定制 模板引擎Thymeleaf 员工管理系统-初见 国际化 国际化实现 编写国际化配置类 登陆功能 编写index.h ...