正题

题目链接:https://www.luogu.com.cn/problem/P6657


题目大意

给出$n\times n$的棋盘,$m$个起点第$i$个为$(1,a_i)$,对应$m$个终点第$i$个为$(n,b_i)$。

求有多少条选出$m$条四联通路径的方案使得没有路径有交点。

\(2\leq n\leq 10^6,1\leq m\leq 100,1\leq T\leq 5\)


解题思路

既然是引理我直接上证明了,设矩阵$A$中$A_{x,y}$为第$x$个起点走到第$y$个起点的所有路径权值乘积和(这题里面为$1$)。

然后答案就是(所有方案的路径权值乘积)这个矩阵的行列式。

具体证明是容斥但是我不会。

时间复杂度$O(n+Tm^3)$


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=2e6+10,P=998244353;
ll T,n,m,fac[N],inv[N],b[110],c[110],a[110][110];
ll C(ll n,ll m)
{return fac[n]*inv[m]%P*inv[n-m]%P;}
ll Path(ll x,ll y){
if(b[x]>c[y])return 0;
return C(c[y]-b[x]+n-1,n-1);
}
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
ll dec(ll n){
ll ans=1,f=1;
for(ll i=1;i<=n;i++){
for(ll j=i;j<=n;j++){
if(a[j][i]){
if(j!=i)swap(a[i],a[j]),f=-f;
break;
}
}
ans=ans*a[i][i]%P;
ll inv=power(a[i][i],P-2);
for(ll j=i;j<=n;j++)a[i][j]=a[i][j]*inv%P;
for(ll j=i+1;j<=n;j++){
ll rate=P-a[j][i];
for(ll k=i;k<=n;k++)
(a[j][k]+=rate*a[i][k]%P)%=P;
}
}
return ans;
}
signed main()
{
scanf("%lld",&T);inv[1]=1;
for(ll i=2;i<N;i++)inv[i]=P-inv[P%i]*(P/i)%P;
fac[0]=inv[0]=1;
for(ll i=1;i<N;i++)
fac[i]=fac[i-1]*i%P,inv[i]=inv[i-1]*inv[i]%P;
while(T--){
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=m;i++)
scanf("%lld%lld",&b[i],&c[i]);
for(ll i=1;i<=m;i++)
for(ll j=1;j<=m;j++)a[i][j]=Path(i,j);
printf("%lld\n",dec(m));
}
return 0;
}

P6657-[模板]LGV 引理的更多相关文章

  1. LGV 引理小记

    讲个笑话,NOI 之前某场模拟赛让我知道了这个神奇的科技,于是准备 NOI 之前学完,结果鸽着鸽着就鸽掉了,考 day1 之前一天本来准备花一天时间学的,然后我就开玩笑般地跟自己说,这么 trivia ...

  2. LGV 引理

    (其实是贺的:https://www.luogu.com.cn/paste/whl2joo4) 目录 LGV 引理 不相交路径计数 例题 Luogu6657. [模板]LGV 引理 CF348D Tu ...

  3. 2021牛客暑期多校训练营9C-Cells【LGV引理,范德蒙德行列式】

    正题 题目链接:https://ac.nowcoder.com/acm/contest/11260/C 题目大意 一个平面上,\(n\)个起点\((0,a_i)\)分别对应终点\((i,0)\),每次 ...

  4. P7736-[NOI2021]路径交点【LGV引理】

    正题 题目链接:https://www.luogu.com.cn/problem/P7736 题目大意 有\(k\)层的图,第\(i\)层有\(n_i\)个点,每层的点从上到下排列,层从左到右排列.再 ...

  5. LGV 引理——二维DAG上 n 点对不相交路径方案数

    文章目录 引入 简介 定义 引理 证明 例题 释疑 扩展 引入 有这样一个问题: 甲和乙在一张网格图上,初始位置 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_ ...

  6. ACM模板_axiomofchoice

    目录 语法 c++ java 动态规划 多重背包 最长不下降子序列 计算几何 向量(结构体) 平面集合基本操作 二维凸包 旋转卡壳 最大空矩形 | 扫描法 平面最近点对 | 分治 最小圆覆盖 | 随机 ...

  7. 模板库 ~ Template library

    TOC 建议使用 Ctrl+F 搜索 . 目录 小工具 / C++ Tricks NOI Linux 1.0 快速读入 / 快速输出 简易小工具 无序映射器 简易调试器 文件 IO 位运算 Smart ...

  8. NOI2021游记

    NOI2021游记 前言 写于 2021.7.28,成绩榜刚出后几个小时.总分 345 拿到银牌 183 名. 我的高中 OI 生活在这里画上句号.结局对我而言虽然不够完美,但是无论怎样都是我人生道路 ...

  9. NOI2021 去不了记

    没错,由于某些 zszz 的原因,我是真的去不了了(指去不了 ZJ) Day -11 ~ -7 - 2021.7.12 - 2021.7.16 令人自闭的 ISIJ 终于结束了----From ycx ...

随机推荐

  1. 聊一聊中台和DDD(领域驱动设计)

    本次分享价值:本次分享主要针对中台.微服务和领域模型的理念.本质及其构建方法论进行探讨.对领域分析的价值所在就是寻求"千变万化"中相对的"稳定性.第一性",然后 ...

  2. .net 的析构函数和dispose模式

  3. QT 编译的过程

  4. ffmpeg 常用知识点收集

    ffmpeg 常用知识点收集 一.基础简介 FFmpeg是一个自由软件,可以运行音频和视频多种格式的录影.转换.流功能,包含了libavcodec ─这是一个用于多个项目中音频和视频的解码器库,以及l ...

  5. Java 大数加法HdAcm1002

    1 import java.util.Scanner; 2 3 4 public class Main { 5 public static void main(String[] args) { 6 S ...

  6. springboot静态资源路径制定

    spring.resources.static-location参数指定了Spring Boot-web项目中静态文件存放地址, 该参数默认设置为: classpath:/static, classp ...

  7. Aggressor Script 开发-Powershell 免杀

    转载https://www.jianshu.com/p/f158a9d6bdcf 前言 在接触到Cobalt Strike的时候就知道有各种插件,想象着那天也可以自己学习编写一个.在之前分析Cobal ...

  8. 根据短链生成二维码并上传七牛云(Java)

    通过短链生成二维码并上传七牛云(Java) 前言 网上这种帖子其实也是很多,大部分搜出来的是CSDN的,然后点进去一看都几乎一样:所以这次给个自己实践的例子记录. 这次也是通过搜索得到的一部分能实现这 ...

  9. ubuntu下使用minicom

    环境 宿主机平台:Ubuntu 16.04.6 目标机:iMX6ULL 安装及使用 首先时在Ubuntu里安装minicom sudo apt-get install minicom 接下来可以使用 ...

  10. 如何实现自定义sk_buff数据包并提交协议栈

    目录 一.自定义数据包的封装流程 1. 分配skb 2.初始定位(skb_reserve) 3.拷贝数据(skb_push / skb_pull / skb_put / ) 4.设置传输层头部 5.设 ...