正题

题目链接:https://www.luogu.com.cn/problem/P6657


题目大意

给出$n\times n$的棋盘,$m$个起点第$i$个为$(1,a_i)$,对应$m$个终点第$i$个为$(n,b_i)$。

求有多少条选出$m$条四联通路径的方案使得没有路径有交点。

\(2\leq n\leq 10^6,1\leq m\leq 100,1\leq T\leq 5\)


解题思路

既然是引理我直接上证明了,设矩阵$A$中$A_{x,y}$为第$x$个起点走到第$y$个起点的所有路径权值乘积和(这题里面为$1$)。

然后答案就是(所有方案的路径权值乘积)这个矩阵的行列式。

具体证明是容斥但是我不会。

时间复杂度$O(n+Tm^3)$


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=2e6+10,P=998244353;
ll T,n,m,fac[N],inv[N],b[110],c[110],a[110][110];
ll C(ll n,ll m)
{return fac[n]*inv[m]%P*inv[n-m]%P;}
ll Path(ll x,ll y){
if(b[x]>c[y])return 0;
return C(c[y]-b[x]+n-1,n-1);
}
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
ll dec(ll n){
ll ans=1,f=1;
for(ll i=1;i<=n;i++){
for(ll j=i;j<=n;j++){
if(a[j][i]){
if(j!=i)swap(a[i],a[j]),f=-f;
break;
}
}
ans=ans*a[i][i]%P;
ll inv=power(a[i][i],P-2);
for(ll j=i;j<=n;j++)a[i][j]=a[i][j]*inv%P;
for(ll j=i+1;j<=n;j++){
ll rate=P-a[j][i];
for(ll k=i;k<=n;k++)
(a[j][k]+=rate*a[i][k]%P)%=P;
}
}
return ans;
}
signed main()
{
scanf("%lld",&T);inv[1]=1;
for(ll i=2;i<N;i++)inv[i]=P-inv[P%i]*(P/i)%P;
fac[0]=inv[0]=1;
for(ll i=1;i<N;i++)
fac[i]=fac[i-1]*i%P,inv[i]=inv[i-1]*inv[i]%P;
while(T--){
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=m;i++)
scanf("%lld%lld",&b[i],&c[i]);
for(ll i=1;i<=m;i++)
for(ll j=1;j<=m;j++)a[i][j]=Path(i,j);
printf("%lld\n",dec(m));
}
return 0;
}

P6657-[模板]LGV 引理的更多相关文章

  1. LGV 引理小记

    讲个笑话,NOI 之前某场模拟赛让我知道了这个神奇的科技,于是准备 NOI 之前学完,结果鸽着鸽着就鸽掉了,考 day1 之前一天本来准备花一天时间学的,然后我就开玩笑般地跟自己说,这么 trivia ...

  2. LGV 引理

    (其实是贺的:https://www.luogu.com.cn/paste/whl2joo4) 目录 LGV 引理 不相交路径计数 例题 Luogu6657. [模板]LGV 引理 CF348D Tu ...

  3. 2021牛客暑期多校训练营9C-Cells【LGV引理,范德蒙德行列式】

    正题 题目链接:https://ac.nowcoder.com/acm/contest/11260/C 题目大意 一个平面上,\(n\)个起点\((0,a_i)\)分别对应终点\((i,0)\),每次 ...

  4. P7736-[NOI2021]路径交点【LGV引理】

    正题 题目链接:https://www.luogu.com.cn/problem/P7736 题目大意 有\(k\)层的图,第\(i\)层有\(n_i\)个点,每层的点从上到下排列,层从左到右排列.再 ...

  5. LGV 引理——二维DAG上 n 点对不相交路径方案数

    文章目录 引入 简介 定义 引理 证明 例题 释疑 扩展 引入 有这样一个问题: 甲和乙在一张网格图上,初始位置 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_ ...

  6. ACM模板_axiomofchoice

    目录 语法 c++ java 动态规划 多重背包 最长不下降子序列 计算几何 向量(结构体) 平面集合基本操作 二维凸包 旋转卡壳 最大空矩形 | 扫描法 平面最近点对 | 分治 最小圆覆盖 | 随机 ...

  7. 模板库 ~ Template library

    TOC 建议使用 Ctrl+F 搜索 . 目录 小工具 / C++ Tricks NOI Linux 1.0 快速读入 / 快速输出 简易小工具 无序映射器 简易调试器 文件 IO 位运算 Smart ...

  8. NOI2021游记

    NOI2021游记 前言 写于 2021.7.28,成绩榜刚出后几个小时.总分 345 拿到银牌 183 名. 我的高中 OI 生活在这里画上句号.结局对我而言虽然不够完美,但是无论怎样都是我人生道路 ...

  9. NOI2021 去不了记

    没错,由于某些 zszz 的原因,我是真的去不了了(指去不了 ZJ) Day -11 ~ -7 - 2021.7.12 - 2021.7.16 令人自闭的 ISIJ 终于结束了----From ycx ...

随机推荐

  1. Redis开发使用指南

    Redis Redis是一个开源(BSD许可)的内存数据结构存储,用作数据库.缓存和消息代理.Redis提供数据结构,如strings, hashes, lists, sets, sorted set ...

  2. Docker运行sonarqube-(代码质量检测平台)

    sonarqube是什么 SonarQube是用于持续检查代码质量的开源平台. 可用于持续集成,持续部署流程中的代码检测环节. idea和jenkins都提供了插件配合使用. liunx推荐配置环境 ...

  3. 旧手机改造成web服务器并实现内网穿透

    前几天由于gitee的审核引擎一通乱杀,使得gitee pages停止提供服务,心生更换服务器或者其他pages托管的想法,看了看价格感人的云服务器以及空空的钱包,这时,脑子有个奇怪的想法飘过,自己搞 ...

  4. Collectors.reducing总结

    Collectors.reducing总结 1. 方法签名 一个参数 public static <T> Collector<T, ?, Optional<T>> ...

  5. wpf 滚动文字 跑马灯

    有时候也会有用,比如我的软件界面 放不下全长的文字时.或者状态栏显示一些时间,地点,温度,湿度等等这些东西 代码链接  https://gitee.com/csszbb/wpfnet5 这属于WPF ...

  6. C# 二维数组 [,]与[][] 的区别 及特性

    arr[,] 用于声明等长的二维数组 Eg: //声明数组有3行 每行长度相等为2 var s = new int[3, 2] { { 1, 2 }, { 3, 4 }, { 1, 4 } }; 获取 ...

  7. 菜鸟攻略–C语言多文件编程初探(二):使用 gcc 手动编译多文件 C 程序

    step1:下载安装 Dev-C++ 已经安装了 Dev-C++ 或系统中的可以跳过这步.去官网下载 Dev-C++.我昨天下载,发现有点慢,所以我把安装文件放到百度网盘了,供大家下载,下载链接为:h ...

  8. MySQL时间戳、字符串、日期

    1.时间转字符串:date_format(date, format) SELECT date_format(now(), '%Y-%m-%d') 2.时间转时间戳:unix_timestamp() S ...

  9. C程序设计学习笔记(完结)

    时间:2015-4-16 09:17 不求甚解,每有会意,欣然忘食.学习的过程是痛苦的 第1章    程序设计和C语言     第2章    算法--程序的灵魂   -算法的五个特点          ...

  10. Docker与数据:三种挂载方式

    操作系统与存储 操作系统中将存储定义为 Volume(卷) ,这是对物理存储的逻辑抽象,以达到对物理存储提供有弹性的分割方式.另外,将外部存储关联到操作系统的动作定义为 Mount(挂载). Dock ...