P6657-[模板]LGV 引理
正题
题目链接:https://www.luogu.com.cn/problem/P6657
题目大意
给出$n\times n$的棋盘,$m$个起点第$i$个为$(1,a_i)$,对应$m$个终点第$i$个为$(n,b_i)$。
求有多少条选出$m$条四联通路径的方案使得没有路径有交点。
\(2\leq n\leq 10^6,1\leq m\leq 100,1\leq T\leq 5\)
解题思路
既然是引理我直接上证明了,设矩阵$A$中$A_{x,y}$为第$x$个起点走到第$y$个起点的所有路径权值乘积和(这题里面为$1$)。
然后答案就是(所有方案的路径权值乘积)这个矩阵的行列式。
具体证明是容斥但是我不会。
时间复杂度$O(n+Tm^3)$
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=2e6+10,P=998244353;
ll T,n,m,fac[N],inv[N],b[110],c[110],a[110][110];
ll C(ll n,ll m)
{return fac[n]*inv[m]%P*inv[n-m]%P;}
ll Path(ll x,ll y){
if(b[x]>c[y])return 0;
return C(c[y]-b[x]+n-1,n-1);
}
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
ll dec(ll n){
ll ans=1,f=1;
for(ll i=1;i<=n;i++){
for(ll j=i;j<=n;j++){
if(a[j][i]){
if(j!=i)swap(a[i],a[j]),f=-f;
break;
}
}
ans=ans*a[i][i]%P;
ll inv=power(a[i][i],P-2);
for(ll j=i;j<=n;j++)a[i][j]=a[i][j]*inv%P;
for(ll j=i+1;j<=n;j++){
ll rate=P-a[j][i];
for(ll k=i;k<=n;k++)
(a[j][k]+=rate*a[i][k]%P)%=P;
}
}
return ans;
}
signed main()
{
scanf("%lld",&T);inv[1]=1;
for(ll i=2;i<N;i++)inv[i]=P-inv[P%i]*(P/i)%P;
fac[0]=inv[0]=1;
for(ll i=1;i<N;i++)
fac[i]=fac[i-1]*i%P,inv[i]=inv[i-1]*inv[i]%P;
while(T--){
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=m;i++)
scanf("%lld%lld",&b[i],&c[i]);
for(ll i=1;i<=m;i++)
for(ll j=1;j<=m;j++)a[i][j]=Path(i,j);
printf("%lld\n",dec(m));
}
return 0;
}
P6657-[模板]LGV 引理的更多相关文章
- LGV 引理小记
讲个笑话,NOI 之前某场模拟赛让我知道了这个神奇的科技,于是准备 NOI 之前学完,结果鸽着鸽着就鸽掉了,考 day1 之前一天本来准备花一天时间学的,然后我就开玩笑般地跟自己说,这么 trivia ...
- LGV 引理
(其实是贺的:https://www.luogu.com.cn/paste/whl2joo4) 目录 LGV 引理 不相交路径计数 例题 Luogu6657. [模板]LGV 引理 CF348D Tu ...
- 2021牛客暑期多校训练营9C-Cells【LGV引理,范德蒙德行列式】
正题 题目链接:https://ac.nowcoder.com/acm/contest/11260/C 题目大意 一个平面上,\(n\)个起点\((0,a_i)\)分别对应终点\((i,0)\),每次 ...
- P7736-[NOI2021]路径交点【LGV引理】
正题 题目链接:https://www.luogu.com.cn/problem/P7736 题目大意 有\(k\)层的图,第\(i\)层有\(n_i\)个点,每层的点从上到下排列,层从左到右排列.再 ...
- LGV 引理——二维DAG上 n 点对不相交路径方案数
文章目录 引入 简介 定义 引理 证明 例题 释疑 扩展 引入 有这样一个问题: 甲和乙在一张网格图上,初始位置 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_ ...
- ACM模板_axiomofchoice
目录 语法 c++ java 动态规划 多重背包 最长不下降子序列 计算几何 向量(结构体) 平面集合基本操作 二维凸包 旋转卡壳 最大空矩形 | 扫描法 平面最近点对 | 分治 最小圆覆盖 | 随机 ...
- 模板库 ~ Template library
TOC 建议使用 Ctrl+F 搜索 . 目录 小工具 / C++ Tricks NOI Linux 1.0 快速读入 / 快速输出 简易小工具 无序映射器 简易调试器 文件 IO 位运算 Smart ...
- NOI2021游记
NOI2021游记 前言 写于 2021.7.28,成绩榜刚出后几个小时.总分 345 拿到银牌 183 名. 我的高中 OI 生活在这里画上句号.结局对我而言虽然不够完美,但是无论怎样都是我人生道路 ...
- NOI2021 去不了记
没错,由于某些 zszz 的原因,我是真的去不了了(指去不了 ZJ) Day -11 ~ -7 - 2021.7.12 - 2021.7.16 令人自闭的 ISIJ 终于结束了----From ycx ...
随机推荐
- Redis开发使用指南
Redis Redis是一个开源(BSD许可)的内存数据结构存储,用作数据库.缓存和消息代理.Redis提供数据结构,如strings, hashes, lists, sets, sorted set ...
- Docker运行sonarqube-(代码质量检测平台)
sonarqube是什么 SonarQube是用于持续检查代码质量的开源平台. 可用于持续集成,持续部署流程中的代码检测环节. idea和jenkins都提供了插件配合使用. liunx推荐配置环境 ...
- 旧手机改造成web服务器并实现内网穿透
前几天由于gitee的审核引擎一通乱杀,使得gitee pages停止提供服务,心生更换服务器或者其他pages托管的想法,看了看价格感人的云服务器以及空空的钱包,这时,脑子有个奇怪的想法飘过,自己搞 ...
- Collectors.reducing总结
Collectors.reducing总结 1. 方法签名 一个参数 public static <T> Collector<T, ?, Optional<T>> ...
- wpf 滚动文字 跑马灯
有时候也会有用,比如我的软件界面 放不下全长的文字时.或者状态栏显示一些时间,地点,温度,湿度等等这些东西 代码链接 https://gitee.com/csszbb/wpfnet5 这属于WPF ...
- C# 二维数组 [,]与[][] 的区别 及特性
arr[,] 用于声明等长的二维数组 Eg: //声明数组有3行 每行长度相等为2 var s = new int[3, 2] { { 1, 2 }, { 3, 4 }, { 1, 4 } }; 获取 ...
- 菜鸟攻略–C语言多文件编程初探(二):使用 gcc 手动编译多文件 C 程序
step1:下载安装 Dev-C++ 已经安装了 Dev-C++ 或系统中的可以跳过这步.去官网下载 Dev-C++.我昨天下载,发现有点慢,所以我把安装文件放到百度网盘了,供大家下载,下载链接为:h ...
- MySQL时间戳、字符串、日期
1.时间转字符串:date_format(date, format) SELECT date_format(now(), '%Y-%m-%d') 2.时间转时间戳:unix_timestamp() S ...
- C程序设计学习笔记(完结)
时间:2015-4-16 09:17 不求甚解,每有会意,欣然忘食.学习的过程是痛苦的 第1章 程序设计和C语言 第2章 算法--程序的灵魂 -算法的五个特点 ...
- Docker与数据:三种挂载方式
操作系统与存储 操作系统中将存储定义为 Volume(卷) ,这是对物理存储的逻辑抽象,以达到对物理存储提供有弹性的分割方式.另外,将外部存储关联到操作系统的动作定义为 Mount(挂载). Dock ...