「CF1208G」 Polygons
「CF1208G」 Polygons
似乎我校神犇在很久以前和我提过这题?
首先有一点显而易见:这 \(k\) 个多边形肯定至少有一个公共的顶点。假设我们将此点定义为起点。
那么对于一个正 \(n\) 边形,每一条边所截的短弧所对应的圆心角大小相等,所以我们可以把顶点标记为 \(\frac{1}{n},\frac{2}{n},\frac{3}{n},\cdots,\frac{n}{n}\)。
那么有结论:对于任意一个正 \(n\) 边形的顶点,当且仅当顶点标号为一个最简分数时才会被统计进答案。
证明也很简单,假设存在一个正 \(n\) 边形顶点标号为非最简分数被统计进答案,那么将标号化为最简分数后其所对应的正多边形我们一定没有选择。但是显然这个正多边形的点数比我们刚才选择的正 \(n\) 边形要少,这与题目要求相悖,故假设不成立。
因为 \(n\ge 3\),所以有两个顶点没有被我们统计到:\(\frac{1}{2} , \frac{n}{n}\) 。
考虑特判:
当 \(k=1\) 时我们一定会选择正三角形,其包含 \(\frac{n}{n}\)。
当 \(k=2\) 时我们可以选择正三角形和正四边形,其包含 \(\frac{1}{2} , \frac{n}{n}\)。
当 \(k\ge 3\) 时由于已经选择了正三角形和正四边形,未统计的两个顶点已经统计,所以不受影响。
考虑对一个正 \(n\) 边形统计这样的最简分数,很显然可以发现答案就是 \(\varphi(n)\)。所以我们选择从 \(\varphi(5)\) 开始的前 \(k\) 大的欧拉函数值即可。
总时间复杂度为 \(O(n\log_2n)\),使用基数排序可优化至 \(O(n)\)。
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+5;
int p[maxn],pri[maxn],phi[maxn],cnt;
int n,k;
int init(){
phi[1]=1;
for(int i=2;i<=n;++i){
if(!p[i]){
pri[++cnt]=i,phi[i]=i-1;
}
for(int j=1;j<=cnt&&pri[j]*i<=n;++j){
p[pri[j]*i]=1;
if(i%pri[j]==0){
phi[pri[j]*i]=phi[i]*pri[j];
break;
}
else phi[i*pri[j]]=phi[i]*(pri[j]-1);
}
}
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n>>k;
if(k==1) cout<<3<<'\n',exit(0);
if(k==2) cout<<6<<'\n',exit(0);
init();
sort(phi+5,phi+n+1);
long long ans=6;
for(int i=5;i<=5+k-2-1;++i) ans+=phi[i];
cout<<ans<<'\n';
return 0;
}
「CF1208G」 Polygons的更多相关文章
- 「译」JUnit 5 系列:条件测试
原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...
- 「译」JUnit 5 系列:扩展模型(Extension Model)
原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...
- JavaScript OOP 之「创建对象」
工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...
- 「C++」理解智能指针
维基百科上面对于「智能指针」是这样描述的: 智能指针(英语:Smart pointer)是一种抽象的数据类型.在程序设计中,它通常是经由类型模板(class template)来实做,借由模板(tem ...
- 「JavaScript」四种跨域方式详解
超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript 的同源策略,并且了解使用跨域跨域的理由. 1. JSONP 首先要介绍的跨域方法必然是 JSON ...
- 「2014-5-31」Z-Stack - Modification of Zigbee Device Object for better network access management
写一份赏心悦目的工程文档,是很困难的事情.若想写得完善,不仅得用对工具(use the right tools),注重文笔,还得投入大把时间,真心是一件难度颇高的事情.但,若是真写好了,也是善莫大焉: ...
- 「2014-3-18」multi-pattern string match using aho-corasick
我是擅(倾)长(向)把一篇文章写成杂文的.毕竟,写博客记录生活点滴,比不得发 paper,要求字斟句酌八股结构到位:风格偏杂文一点,也是没人拒稿的.这么说来,arxiv 就好比是 paper 世界的博 ...
- 「2014-3-17」C pointer again …
记录一个比较基础的东东-- C 语言的指针,一直让人又爱又恨,爱它的人觉得它既灵活又强大,恨它的人觉得它太过于灵活太过于强大以至于容易将人绕晕.最早接触 C 语言,还是在刚进入大学的时候,算起来有好些 ...
- 「2014-3-13」Javascript Engine, Java VM, Python interpreter, PyPy – a glance
提要: url anchor (ajax) => javascript engine (1~4 articles) => java VM vs. python interpreter =& ...
随机推荐
- Python小白的数学建模课-04.整数规划
整数规划与线性规划的差别只是变量的整数约束. 问题区别一点点,难度相差千万里. 选择简单通用的编程方案,让求解器去处理吧. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达 ...
- python基础课程讲解
day01: 编程语言的介绍: 一 1.什么是编程?(****) 两个环节: 1.把做事的思维逻辑给想清楚了 2.用计算机能听懂的语言也就是编程语言把做事的步骤给翻译下来 2.为什么要编程? 人要奴役 ...
- IOS 小组件(7):小组件点击交互
引言 前面我们似乎掌握了实现一个小组件所需要的一切技能,默认情况下桌面点击小组件,也正常跳转到了App中.接下来我们一起来看看,小组件是怎么做到点击跳转到App的. 点击交互方式 点击Widget ...
- GO学习-(4) Go语言基础之变量和常量
Go语言基础之变量和常量 变量和常量是编程中必不可少的部分,也是很好理解的一部分. 标识符与关键字 标识符 在编程语言中标识符就是程序员定义的具有特殊意义的词,比如变量名.常量名.函数名等等. Go语 ...
- springboot打包上线
发布到线上的包结构 runtime是发布到线上的目录结构 1.项目pom.xml添加打包配置 <build> <plugins> <plugin> <grou ...
- CVPR2020论文解读:OCR场景文本识别
CVPR2020论文解读:OCR场景文本识别 ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network∗ 论文 ...
- CUDA 9中张量核(Tensor Cores)编程
CUDA 9中张量核(Tensor Cores)编程 Programming Tensor Cores in CUDA 9 一.概述 新的Volta GPU架构的一个重要特点是它的Tensor核,使T ...
- jvm相关自我总结和 VisualVM工具的使用
idea 二个工具: jclasslib Hexview jdk监控工具 VisualVM工具的使用: https://www.ibm.com/developerworks/cn/java/j-lo- ...
- NOIP模拟测试29「爬山·学数数·七十和十七」
爬山题解不想写了 学数数 离散化然后找到以每一个值为最大值的连续子段有多少个,然后开个桶维护 那么怎么找以每一个值为最大值的连续子段个数 方法1(我的极笨的方法) 考试时我的丑陋思路, 定义极左值为左 ...
- 无需会员将有道云笔记脑图转换xmind
我的烦恼 有道云笔记有脑图功能,我平时经常用到,之所以很少用到其他脑图工具,是因为我一直用有道云笔记写笔记.因此编辑脑图和查看脑图比较方便,但是需要将脑图导出的时候目前只支持图片和xmind,但是需要 ...