「CF1208G」 Polygons
「CF1208G」 Polygons
似乎我校神犇在很久以前和我提过这题?
首先有一点显而易见:这 \(k\) 个多边形肯定至少有一个公共的顶点。假设我们将此点定义为起点。
那么对于一个正 \(n\) 边形,每一条边所截的短弧所对应的圆心角大小相等,所以我们可以把顶点标记为 \(\frac{1}{n},\frac{2}{n},\frac{3}{n},\cdots,\frac{n}{n}\)。
那么有结论:对于任意一个正 \(n\) 边形的顶点,当且仅当顶点标号为一个最简分数时才会被统计进答案。
证明也很简单,假设存在一个正 \(n\) 边形顶点标号为非最简分数被统计进答案,那么将标号化为最简分数后其所对应的正多边形我们一定没有选择。但是显然这个正多边形的点数比我们刚才选择的正 \(n\) 边形要少,这与题目要求相悖,故假设不成立。
因为 \(n\ge 3\),所以有两个顶点没有被我们统计到:\(\frac{1}{2} , \frac{n}{n}\) 。
考虑特判:
当 \(k=1\) 时我们一定会选择正三角形,其包含 \(\frac{n}{n}\)。
当 \(k=2\) 时我们可以选择正三角形和正四边形,其包含 \(\frac{1}{2} , \frac{n}{n}\)。
当 \(k\ge 3\) 时由于已经选择了正三角形和正四边形,未统计的两个顶点已经统计,所以不受影响。
考虑对一个正 \(n\) 边形统计这样的最简分数,很显然可以发现答案就是 \(\varphi(n)\)。所以我们选择从 \(\varphi(5)\) 开始的前 \(k\) 大的欧拉函数值即可。
总时间复杂度为 \(O(n\log_2n)\),使用基数排序可优化至 \(O(n)\)。
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+5;
int p[maxn],pri[maxn],phi[maxn],cnt;
int n,k;
int init(){
phi[1]=1;
for(int i=2;i<=n;++i){
if(!p[i]){
pri[++cnt]=i,phi[i]=i-1;
}
for(int j=1;j<=cnt&&pri[j]*i<=n;++j){
p[pri[j]*i]=1;
if(i%pri[j]==0){
phi[pri[j]*i]=phi[i]*pri[j];
break;
}
else phi[i*pri[j]]=phi[i]*(pri[j]-1);
}
}
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n>>k;
if(k==1) cout<<3<<'\n',exit(0);
if(k==2) cout<<6<<'\n',exit(0);
init();
sort(phi+5,phi+n+1);
long long ans=6;
for(int i=5;i<=5+k-2-1;++i) ans+=phi[i];
cout<<ans<<'\n';
return 0;
}
「CF1208G」 Polygons的更多相关文章
- 「译」JUnit 5 系列:条件测试
原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...
- 「译」JUnit 5 系列:扩展模型(Extension Model)
原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...
- JavaScript OOP 之「创建对象」
工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...
- 「C++」理解智能指针
维基百科上面对于「智能指针」是这样描述的: 智能指针(英语:Smart pointer)是一种抽象的数据类型.在程序设计中,它通常是经由类型模板(class template)来实做,借由模板(tem ...
- 「JavaScript」四种跨域方式详解
超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript 的同源策略,并且了解使用跨域跨域的理由. 1. JSONP 首先要介绍的跨域方法必然是 JSON ...
- 「2014-5-31」Z-Stack - Modification of Zigbee Device Object for better network access management
写一份赏心悦目的工程文档,是很困难的事情.若想写得完善,不仅得用对工具(use the right tools),注重文笔,还得投入大把时间,真心是一件难度颇高的事情.但,若是真写好了,也是善莫大焉: ...
- 「2014-3-18」multi-pattern string match using aho-corasick
我是擅(倾)长(向)把一篇文章写成杂文的.毕竟,写博客记录生活点滴,比不得发 paper,要求字斟句酌八股结构到位:风格偏杂文一点,也是没人拒稿的.这么说来,arxiv 就好比是 paper 世界的博 ...
- 「2014-3-17」C pointer again …
记录一个比较基础的东东-- C 语言的指针,一直让人又爱又恨,爱它的人觉得它既灵活又强大,恨它的人觉得它太过于灵活太过于强大以至于容易将人绕晕.最早接触 C 语言,还是在刚进入大学的时候,算起来有好些 ...
- 「2014-3-13」Javascript Engine, Java VM, Python interpreter, PyPy – a glance
提要: url anchor (ajax) => javascript engine (1~4 articles) => java VM vs. python interpreter =& ...
随机推荐
- WEB安全防护相关响应头(上)
WEB 安全攻防是个庞大的话题,有各种不同角度的探讨和实践.即使只讨论防护的对象,也有诸多不同的方向,包括但不限于:WEB 服务器.数据库.业务逻辑.敏感数据等等.除了这些我们惯常关注的方面,WEB ...
- Go语言的GOPATH详解
在GOLAND中设置GOPATH: 设置好路径后,并不是直接在这个路径下面写代码文件就行了 GO会识别GOPATH下的src目录,而真正的引用的包名,是src下的目录名,然后才是代码模块名 目录结构如 ...
- Jmeter- 笔记6 - 负载测试
普通场景介绍 1.线程数:并发用户数 2.Ramp-Up时间:启动时间(线程数的准备时间),在这个时间点结束时,所有用户都已运行起来 3.循环次数:每个线程数都要运行的次数.永远 和 调度器一起使用, ...
- TVM适配NN编译Compiler缺陷
TVM适配NN编译Compiler缺陷 内容纲要 前言 TVM针对VTA的编译流程 自定义VTA架构:TVM的缺陷与性能瓶颈 TVM缺陷与瓶颈 缺陷一:SRAM配置灵活性差 缺陷二:计算阵列配置僵硬 ...
- NNVM Compiler,AI框架的开放式编译器
NNVM Compiler,AI框架的开放式编译器 深度学习已变得无处不在且不可或缺.在多种平台(例如手机,GPU,IoT设备和专用加速器)上部署深度学习工作负载的需求不断增长.宣布了TVM堆栈,以弥 ...
- TensorFlow多元线性回归实现
多元线性回归的具体实现 导入需要的所有软件包: 因为各特征的数据范围不同,需要归一化特征数据.为此定义一个归一化函数.另外,这里添加一个额外的固定输入值将权重和偏置结合起来.为此定义函数 appe ...
- RADAR和LIDAR区别分析
RADAR和LIDAR区别分析 如果一直关注自动驾驶汽车的新闻,可能已经注意到许多自动驾驶汽车制造商正在使用LIDAR(光成像检测和测距)进行车载物体检测.对于许多自动 驾驶汽车应用而言,LIDAR比 ...
- 如何保证Qt状态机的最佳性能
如何保证Qt状态机的最佳性能 How to ensure the best Qt state machine performance 如果您使用Qt进行应用程序开发,并且使用状态机,那么很可能您正在使 ...
- 如果攻击者操控了 redirect_uri,会怎样?
读者在看这篇文章之前,请先了解 Oauth2.0 的 Authorization Code 授权流程,可以看 Authorization Code 授权原理和实现方法 在 Token Enpoint ...
- java后端知识点梳理——JVM
可以先看看我的深入理解java虚拟机笔记 深入理解java虚拟机笔记Chapter2 深入理解java虚拟机笔记Chapter3-垃圾收集器 深入理解java虚拟机笔记Chapter3-内存分配策略 ...